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Abstract

We study random knotting by considering knot and link diagrams as decorated, (rooted)

topological maps on spheres and pulling them uniformly from among sets of a given number

of vertices n. This model is an exciting new model which captures both the random geometry

of space curve models of knotting as well as the ease of computing invariants from diagrams.

This model of random knotting is similar to those studied by Diao et al., and Dunfield et al.

We prove that unknot diagrams are asymptotically exponentially rare, an analogue of

Sumners and Whittington’s result for self-avoiding walks. Our proof uses the same idea: We

first show that knot diagrams obey a pattern theorem and exhibit fractal structure. We use

a rejection sampling method to present experimental data showing that these asymptotic

results occur quickly, and compare parallels to other models of random knots.

We finish by providing a number of extensions to the diagram model. The diagram model

can be used to study embedded graph theory, open knot theory, virtual knot theory, and even

random knots of fixed type. In this latter scenario, we prove a result still unproven for other

models of random knotting. We additionally discuss an alternative method for randomly

sampling diagrams via a Markov chain Monte Carlo method.

Index words: Random knots, Knot theory, Random maps, Low dimensional topology,
Quantum field theory, Statistical mechanics



A Diagrammatic Theory of Random Knots

by

Harrison Chapman

B.A., Bowdoin College, 2011

M.A., University of Georgia, 2015

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2017



c© 2017

Harrison Chapman

All Rights Reserved



A Diagrammatic Theory of Random Knots

by

Harrison Chapman

Approved:

Major Professor: Jason Cantarella

Committee: David Gay

Daniel Krashen

Michael Usher

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School

The University of Georgia

May 2017



iv

Dedication

To Rachel, who brightens each of my days.



v

Acknowledgements

I am grateful to my advisor Jason Cantarella, for his support and advice throughout my
tenure as a graduate student. The quality of this thesis is a direct result of him introducing
me to the knot tabulation project and suggesting that I prove the Frisch-Wasserman-Delbrück
conjecture. I am extremely fortunate that I have had the opportunity to work with such a
wonderful advisor, brilliant mathematician, and exceptional person.

I am also grateful to the summer school on applied combinatorics at the University
of Saskatchewan and CanaDAM thereafter, where I was able to meet many experts in
combinatorics and random knotting models. I am grateful to Andrew Rechnitzer and his
expertise, and his collaboration on the results in Chapter 9.

Throughout my graduate career I have been very fortunate to receive funding from the
NSF, PIMS (CRG in Analytic Combinatorics), the Simons Center, and the AMS through
which I was able to collaborate with many brilliant mathematicians.

I would like to thank Gary Iliev greatly to alerting me to reference [87], which greatly
simplified a number of proofs. I am grateful for conversations with Julien Courtiel, Elizabeth
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Chapter 1

Overview

The study of random knotting arises in numerous areas, principal among which is polymer
physics: Polymers (such as DNA or proteins) are considered to be strings in space and in
many cases their function (or lack thereof) depends on any “knots” that appear within [98,
85]. The random diagram model of random knotting is briefly: Given a number n of crossings,
sample uniformly an unlabeled knot diagram with n crossings and return its knot type. It is
similar to models of [37] and [39], but these models do not sample from any well-understood
measure on spaces of knot diagrams.

In the context of chemistry and bioligy, Frisch and Wasserman [49] and Delbrück [34]
independently conjectured;

Conjecture 1.1 (Frisch-Wasserman 1962, Delbrück 1961). As the size n of a randomly
sampled knot grows large, the probability that it is knotted tends to 1.

The first proof of the conjecture was for n-step self-avoiding lattice polygons, a landmark
result by Sumners and Whittington [99] and Pippenger [84]:

Theorem 1.2 (Sumners-Whittington 1988, Pippenger 1989). As the number of steps n of a
self-avoiding lattice polygon grows large, the probability that the polygon is knotted tends to 1
exponentially quickly.

Shortly thereafter the conjecture was proved in view of other models of space curves:
Gaussian random polygons [59], and equilateral random polygons [36]. As new models of
random knotting are developed, such as the new Petaluma [41] model of Even-Zohar et al., it
is typically a primary goal to prove the analogous result.

The driving goal of the research presented in this manuscript was to show that the
Frisch-Wasserman-Delbrück (FWD) conjecture holds in the random diagram model;

Theorem 1.3. As the number of crossings n of a randomly sampled knot diagram grows
large, the probability that the diagram is knotted tends to 1 exponentially quickly.

We prove this result in Chapter 4. This will follow from a Pattern theorem that expresses
the fractal structure of random knot diagrams.

We begin in Chapter 2 with preliminaries on knot theory, random knotting, and relevant
combinatorial models. In Chapter 3 we explicitly define knot diagrams and the knot diagram
model, and we describe the findings of a census of all such objects of up to 10 crossings from
work together with Cantarella and Mastin.

In Chapter 4, we prove a Pattern theorem for knot diagrams. This is done with generality
sufficient to extend to many different types of objects. There are two core ingredients for
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this theorem: 1) A method of “attaching” patterns and 2) some control over the asymptotic
number of diagrams involved. This Pattern theorem allows us to confirm the above FWD
conjecture for a number of random diagram models. In Chapter 5 we provide experimental
data gathered using rejection sampling for the random diagram model and compare numerical
results to other models of random knotting.

In the following chapters we examine a variety of different classes of diagrams relating to
different aspects of knot theory: Chapter 6 discusses extensions to embedded spatial graph
theory, Chapter 7 discusses applications to open knot theory and random knots of fixed type,
and Chapter 8 explores generalizations to virtual knot theory. We examine when Pattern
theorem results continue to hold—or when they might not, any potential obstructions. In
Chapter 9 we present work done together with Rechnitzer on developing a new method
of sampling knot diagrams randomly using a Metropolis style Markov chain Monte Carlo
algorithm. We prove that this sampler converges to a desired distribution, and examine
extensions to varied classes of diagrams.
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Chapter 2

Introduction

2.1 Knot Theory

We briefly outline the important concepts of knot theory below. For a more thorough
presentation of the theory, see for instance Colin Adams’s The Knot Book [1].

2.1.1 Basics of Knot Theory

A knot is an embedding K : S1 ↪→ S3 of the circle into the 3-sphere. A link is an embedding
L : (S1)k ↪→ S3 of k circles into the 3-sphere. Each circle in the domain is called a link
component ; knots are simply links with a single component. A knot or link is oriented if
there is a designated direction around each link component. This definition by itself does not
capture the motif that a mathematical knot or link should be analogous physical string or
rope. This is resolved through the definition of ambient isotopy.

Definition 2.1. Let N and M be manifolds and let g0 and g1 both be embeddings of N into
M . An ambient isotopy is a smooth map g : [0, 1]×N →M with the property that,

1. g|0 = g0,

2. g|1 = g1, and

3. g|t is an embedding of N into M for all t ∈ [0, 1].

In knot theory, the notion of equivalence for knots and links is that of ambient isotopy.
A knot type [K] is the equivalence class of all other knots which are ambient-isotopic to
the knot K. Similarly, a link type [L] is the equivalence class of all other links who are
ambient-isotopic to L. In this manuscript we will always refer to embeddings K as knots
or links and equivalence classes [K] as knot types or link types. For the remainder of this
discussion, we will discuss the case of knots. The analogous results and definitions follow for
links as well, except where explicitly mentioned.

So far our definitions permit wild knots ; knots with infinitesimal behavior whose embedding
cannot be thickened to an embedded tube. As wild knots are both more difficult to work
with and less physically relevant, we will require additionally that all of our knots, links,
and ambient isotopies are smooth (i.e. differentiable maps). The smooth ambient isotopy
equivalence essentially says then that two knots are equivalent if one can be moved around in
space without cutting and splicing and transformed into the other. We will henceforth omit
the descriptor “smooth” in these cases, and it should be taken as implied.

Knots which are not wild are tame; this descriptor is usually omitted. The field of knot and
link types is still vast and varied; the most simple knot type, the unknot, is the equivalence



4

Figure 2.1: Small knots and links. From left to right: Unknot, Trefoil, Figure-Eight Knot,
Hopf Link, Boromean Link

=

Figure 2.2: A crossing. The solid piece passes over the broken piece, although both portions
represent a continuous interval of a larger knot.

class of knots containing a great circle of the ambient S3. If a knot represents the unknot,
it is trivial ; otherwise, it is knotted. Some small knots and links, including the unknot, are
given in Figure 2.1.

A beautiful theorem of Reidemester [86] relates the theory of knotting in space to a study
of artistic representations of knots called diagrams. Informally (we will be far more precise
in a following section), a diagram for the knot or link L is a generic projection of L onto
a sphere, except that each double point is drawn as a crossing as shown in Figure 2.2 in
order to demarcate which piece of the knot is closer to the viewer. Examples of both a knot
diagram and a link diagram are given in Figure 2.3.

The embedding of a diagram is insignificant—two diagrams which are related by per-
turbations which do not introduce new double points or change the local embedding of
crossings are equivalent. Reidemeister defined three local moves which act on diagrams called
Reidemeister moves and are depicted in Figure 2.4. We then have an alternate definition
of knot and link type: The knot or link type of a diagram D is the equivalence class [D]
of the diagram under the Reidemeister moves. Reidemeister’s theorem says that there is a
one-to-one correspondence between types of knots and links in space and types of knot and
link diagrams which is natural in the sense that two knots or links have the same type if and
only if any of their diagrams are equivalent up to Reidemeister moves.
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Figure 2.3: A knot diagram (left) and a link diagram (right).

Figure 2.4: The three Reidemeister moves.

The split link of two links L1 and L2 with `1 and `2 respective link components is an
embedding L1 ∪ L2 : (S1)`1 × (S1)`2 ↪→ S3, so that there exist disjoint balls B3

1 and B3
2 ⊂ S3

so that the image of L1 ∪L2 contained in B3
1 is the image of L1 and the image inside of B3

2 is
L2. The link type of a split link is independent of the choice of embedding.

Knots have the important composition operation of connect summation. Let K1, K2 be
two knots in space. Consider their split link K1 ∪ K2. Let γ : [0, 1] × [0, 1] ↪→ S3 be the
embedding of a rectangle whose left side γ|x=0 maps to a small portion of K1 and whose
right side γ|x=1 maps to a small portion of K2. Then the connect sum of K1 and K2, denoted
K1#K2, is the new knot formed by smoothing the curve which starts at γ(0, 0), traverses
K1 \ γ|x=0 until γ(0, 1), follows γ|y=1, traverses K2 \ γx=1 until γ(1, 0), and follows γ|y=0 to
close. The knot type of a connect sum is independent of the choice of rectangle γ.

The connect sum extends to oriented knots (the new curve’s orientation must preserve
the original orientations of both components), and to links (although the connect summation
happens to designated link components of either link). Importantly, connect sum has no
inverses; there are no two knots (or links) whose connect sum is trivial. Connect sum is
associative on knot types, and for knot types connect sum is transitive, i.e. [(K1#K2)#K3] =
[K1#(K2#K3)], although this is not necessarily true in the case of links. The connect sum of
two links with `1 and `2 respective components produces a new link of `1 + `2− 1 components;
namely, the connect sum of two knots is always a knot.

It is important for our purposes to consider how knots and links may decompose into
pieces. A k-tangle is a generic embedding of k closed intervals and any number of closed circles
into B3 so that precisely the 2k interval ends all lie in the boundary. A k-tangle diagram T is
a generic immersion (generic in the same way as knot diagrams above) of k intervals and any
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number of circles into S2 together with over-under information at each double point. We will
primarily discuss tangle diagrams in which all 2k ends of the intervals are all adjacent across
some connected component of S2 \ T , so that the k-tangle diagram may be viewed as being
an immersion into the disk D2 with exactly the 2k interval ends lying in the boundary circle.
An open strand of a tangle is any one interval; a closed strand of a tangle is any one circle.

2.1.2 Identification and Invariants

An important and incredibly difficult problem in knot theory is that of identification: How
can one determine if two knot types [K1] and [K2] are the same? Of course, one could prove
this by providing an explicit ambient isotopy equating [K1] and [K2]. Writing out such an
isotopy is often exceedingly tedious, and finding such an isotopy computationally difficult.
Rather than find such an isotopy explicitly, the mantra of the knot theorist is to use knot or
link invariants—properties of knots and links which are invariant under ambient isotopy—to
identify and distinguish knot types.

A simple and important invariant is the minimal crossing number. Let [L] be a knot or
link type and let D be a diagram in [L]. Then the crossing number cr(D) of the diagram D is
the number of crossings in D. The minimal crossing number (sometimes just crossing number
when it is unambiguous) cr([L]) of [L] is the minimum min[D]=[L] cr(D) over all diagrams D
for the type [L].

The minimal crossing number is difficult to compute (there are an infinite number of
diagrams for any given knot or link type to minimize over) but plays an important role in
the naming of small knots and links. Rolfsen’s Knots and Links [90] contains a table of all
knots1 named in the format,

[minimal crossing number][index],

where for each minimal crossing number, the index starts from 1. Links and knots of higher
minimal crossing number have been tabulated similarly by Thistlethwaite [100] and later by
others including Hoste et al. [54].

Under this convention, the unknot has name 01, the trefoil has name 31, and the figure-
eight knot has name 41. As there are two different knots with minimal crossing number 5,
51 and 52 shown in Figure 2.5, minimal crossing number alone is insufficient to uniquely
identify the type of a knot or link. Typically, knot and link tables only list knot and link types
[L] which are prime in that there are no two types [L1] and [L2] for which [L] = [L1#L2].
Knots and links which are not prime are composite. All knot types have a unique prime
decomposition into prime knot types under connect sum.

An invariant which is both better (although not perfect) at identifying knots as well as
easier to compute is the HOMFLY polynomial [48]. The HOMFLY polynomial H([L]) of an
oriented knot or link type [L] is a Laurent polynomial in variables a, z defined recursively by
base case

H(01) = 1,

1Rolfsen’s table actually double-counts: Perko [83] noticed that Rolfsen’s knots 10161 and 10162

are actually equivalent. Some tables omit 10162 entirely, while others downshift the index for knots
10163–10166.
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Figure 2.5: The knots 51 and 52 are different but have the same minimal crossing number.

L+ L− L0

Figure 2.6: Definitions of terms in the HOMFLY skein relation equation.

and the skein relation,
aH(L+)− a−1 H(L−) = H(L0),

where L+, L−, and L0 are diagrams which differ from a diagram L of [L] locally with some
designated crossing either signed positively, negatively, or smoothed as defined in Figure 2.6.

Although the HOMFLY polynomial is defined for oriented links, this is immaterial in the
case of unoriented knots; either orientation of a knot type [K] produces the same HOMFLY
polynomial. This is not the case for unoriented links, and by considering all orientations of
link components of an unoriented link type [L], one can find a spectrum of different HOMFLY
polynomials for [L].

It is incredibly useful that, unlike invariants like the minimal crossing number, the
HOMFLY polynomial can be computed from a single diagram representation of a knot or link.
As a result, it is possible to compute HOMFLY polynomials for knots and links with relative
ease through software [42]. The HOMFLY polynomial is not alone in this computational
convenience. In fact, it generalizes two other polynomials—the Alexander polynomial [4] and
the Jones polynomial [62]—which can be computed similarly using a recursive skein relation.

The HOMFLY polynomial cannot alone distinguish knots. For instance, H(51) = H(10132)
and H(1025) = H(1056). However, it is yet an open question of whether the unknot the
only knot with trivial (i.e., 1) HOMFLY polynomial. The conjecture to the affirmative is a



8

generalization of the Jones Conjecture. Recently, the conjecture has been confirmed for all
knot types up to 22 crossings by Sikora et al. [106]. The Jones Conjecture is false in the case
of links: There exist relatively small nontrivial links with HOMFLY polynomial 1.

2.2 Combinatorial Classes and Generating Functions

We will use some of the language and tools of combinatorics in formalizing the material of
this manuscript. Further information and numerous examples can be found in, for example,
Flajolet and Sedgewick’s Analytic Combinatorics [44].

Definition 2.2. A (combinatorial) class A is a finite or countable set of objects on which a
size function is defined, so that

1. The size of any object is non-negative, and

2. The number of objects of any fixed size is finite.

There are some conventions for notation when dealing with classes. If A is a class, then
An denotes the objects in A of size n. The number of objects of size n, |An|, is denoted in
lower case, as an. The size function is denoted as | · |.

A critical tool for working with combinatorial classes is the generating function:

Definition 2.3. The (ordinary) generating function (OGF) for a class A is the formal power
series,

A(z) =
∞∑

n=0

anz
n.

Equivalently, the ordinary generating function for a class A can be expressed,

A(z) =
∑

a∈A

z|a|.

The standard notation for generating functions is that, for calligraphic- or script-named
classes A, the generating function is denoted by the roman A. Generating functions contain
all the information of a sequence (in this case, the sequence of counts {an}) in the form of
a function. This has many advantages, but most important to this manuscript is the close
relationship between the asymptotic growth of a class and the radius of convergence of its
generating function:

Theorem 2.1 (Cauchy 1821 [23], Hadamard 1888 [50]). The radius of convergence ρ of a
series A(z) =

∑
n anz

n is given by,

1

ρ
= lim sup

n→∞
|an|1/n.

The generating function has an important connection to the partition function in statistical
mechanics [67]. If for a ∈ |A| we view the size |a| as the total energy Ea of the object a, and
if we make the substitution z = e−β (where β corresponds in some manner to thermodynamic
energy), then we recover an expression for a partition function;

A(e−β) =
∑

a∈A

e−βEa .
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2.3 Random knotting

Knots and links arise naturally in biology, chemistry, and physics. There are many interesting
applications [61], although perhaps the most obvious application is whenever something acts
like a rope or string. A critical recurring example of this are polymers, long molecular chains
built as a sequence of small pieces called monomers.

Example. Deoxyribonucleic acid or DNA is a long, double-helical polymer formed out of
base pairs of nucleotides—cytosine (C) and guanine (G), and adenine (A) and thymine (T).
In most organisms and some viruses, DNA carries genetic data which is transcribed (read)
during the synthesis of materials by biological machines called enzymes.

In bacteria, DNA takes the shape of a closed topological circle which can exhibit true
topological knotting. In more complicated organisms, DNA is a long open strand. In either
case, any “knotting” [18, 8, 31, 92, 101] which occurs may disrupt or otherwise affect DNA’s
primary duties or its duplication during cellular division.

Example. A protein is a long polymer formed out of amino acids. Proteins serve an array of
purposes in living organisms, including working as machines called enzymes which manipulate
molecules and catalyze reactions inside cells. After creation, proteins are carefully folded into
different shapes (potentially even “knotted” [85, 57, 79, 33, 70]) which are essential to their
functionality.

Example. There are a large number of polymers which arise elsewhere in chemistry. This
includes natural polymers—such as silk, shellac, rubber, amber, and cotton—and synthetic
polymers—such as nylon, neoprene, and polystyrene [77]. Knotting or lack thereof can affect
the configuration space or structural integrity of any such polymers.

As knotting is integral to our understanding of polymers and similar objects, mathemati-
cians have devised models for the study of such physical knots. A key theme throughout
all models is that these knots have some geometry in addition to their topology. Indeed,
one cannot necessarily presume that a molecule is “infinitely flexible” or “infinitesimally
thin;” introducing geometry provides an access point for incorporating these properties. The
geometry then induces a probability distribution on knots and knot types, so we call this
scenario random knot theory.

There are many such models for studying random knots, including random Grassmannian
space polygons [22, 21], random Chebychev polynomials [27], random braid words [80], and
Even-Zohar et al.’s Petaluma [41] model. A classical, simple, and highly relevant such model
is that of self-avoiding polygons, which we now define.

2.3.1 Self-avoiding polygons

Let Λ be a lattice with a basepoint O and a set S of nonzero vectors in Λ. We will primarily
consider the hypercubic lattices Zd (specifically d = 2, 3) with basepoint the origin O = ~0
and S the set of unit vectors ±ei). A random walk [71] on Λ of n steps in S is a sequence of
n+ 1 points W = (ω0, ω1, . . . , ωn) such that ω0 = O, and ωi−1 − ωi ∈ S for all 1 ≤ i ≤ n. A
random walk is self-avoiding if furthermore ωi 6= ωj for all i 6= j. When the lattice is Zd and
S is the set of unit vectors, we will call these objects random walks on the integer lattice or
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Figure 2.7: An example of a random walk and a self-avoiding walk on Z2.

self-avoiding walks on the integer lattice respectively. An example of a random walk and a
self-avoiding walk on Z2 is given in Figure 2.7.

Although it is a combinatorial object defined rather simply, there are neither closed
formulas nor precise asymptotic growth rates for the counts of self-avoiding walks on the
lattices Zd for d = 2, 3. It is simple to work with self-avoiding walks on computers, but
the “long-term memory” condition of self-avoidingness and the exponential rate at which
the number of self-avoiding walks grows makes exact enumeration and even computational
tabulation difficult or space-intensive. Nevertheless, it is conjectured that the asymptotic
growth behavior of the number of self avoiding walks of n steps, cn, behaves like,

cn ∼
n→∞

Aµnnγ−1. (2.1)

This is a type of behavior which is exhibited by a large number of combinatorial models [44],
including some which are solved exactly. The number µ is called the connective constant for
the lattice Λ, and γ is a critical exponent. Although this behavior is unproven, it is known
that the connective constant

µ = lim
n→∞

(cn)1/n

exists for the hypercubic lattices Zd, and estimates are known numerically. Existence of µ is
important to a number of results on self-avoiding walks; we will have a similar requirement
for random diagrams.

Points in self-avoiding walks are referred to as sites, and edges between points (nearest-
neighbor) bonds. It is easy to see how self-avoiding walks model polymers: Each site corresponds
to a monomer in the larger chain, and each bond corresponds to a (chemical) bond between
monomers in the molecule. That polymers are not infinitely flexible is represented in that all
bonds are of unit (or otherwise bounded) length. That polymers are not infinitesimally thin
is modeled in that the walk cannot intersect with itself, much like a physical piece of rope.

A self-avoiding walk in Z3 may be viewed as a specific embedding of an interval into S3;
to arrive at knot theory proper, we need the notion of a closed loop. This is a self-avoiding
polygon. A self-avoiding polygon in a lattice Λ with n steps in S is a self-avoiding walk
P = (p0, p1, . . . , pn) which is self-avoiding except for that pn = p0 (the degenerate case where
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Figure 2.8: An example of a self-avoiding polygon on Z2.

n = 2 and the polygon steps out and backtracks is forbidden). An example of a self-avoiding
polygon on Z2 is given in Figure 2.8. Hence, a self-avoiding polygon has the topology of a
circle rather than an interval. Notice that in the case of Zd, a self-avoiding polygon necessarily
has an even number of steps.

Much like the case of self-avoiding walks, it is conjectured but unproven that the asymptotic
behavior of the counts gn of self-avoiding polygons of n steps is

gn ∼
n→∞

Bµnnα−1. (2.2)

It is known that the connective constant µ exists; in fact, it is a result of Hammersley [51]
that for the (hyper-)cubic lattices the connective constant is identical to that of self avoiding
walks.

A self-avoiding polygon in Z3 has the topology of a circle S1 in the space S3. Hence, we
can associate to any self-avoiding polygon P a knot type [P ]. Let gn([K]) be the number
of self-avoiding polygons of n steps representing the knot type [K]. For every fixed n this
defines a probability distribution on knot types [K]:

P([K]) =
gn([K])

gn
.

This is the self-avoiding polygon model of random knotting.

2.3.2 Pattern theorems and the Frisch-Wasserman-Delbrück Conjecture

In the context of chemical and DNA topology, Frisch and Wasserman [49] and Delbrück [34]
independently conjectured;

Conjecture 2.2 (Frisch-Wasserman 1962, Delbrück 1961). As the number of steps n of a
random self-avoiding polygon grows large, the probability that it is knotted (that is, does not
represent the knot type 01) tends to 1. Conversely,

lim
n→∞

gn(01)

gn
= 0.
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Figure 2.9: A tight trefoil proper pattern T .

This conjecture remained unproven for nearly three decades until 1988 when Sumners
and Whittington [99] and Pippenger [84] independently proved it as a theorem. Their proofs
rely on a key tool: A pattern theorem for self-avoiding polygons, which dictates that self-
avoiding polygons exhibit fractal structure, and contain desired sub-patterns often with high
probability.

A pattern is a finite sub-walk inside of a self-avoiding walk or polygon [87]. A pattern
S = (s0, s1, . . . , sk) occurs at the i-th vertex of a walk W = (ω0, ω1, . . . , ωn) if there exists
some vector ~v ∈ Λ so that ωi+` − s` = ~v for all 0 ≤ ` ≤ k. A pattern occurs m times in W if
there exist m distinct indices i and vectors ~v at which S occurs in W .

Not every pattern can occur in certain walks, and some patterns which can occur still
cannot occur multiple times. For a class of walks or polygons, call a pattern S proper if for
every m there exists a walk (or polygon) for which S occurs at least m times.

Theorem 2.3 (Kesten’s Pattern Theorem [65, 64]). Let S be a proper pattern and let cn[m,S]
and gn[m,S] denote the number of self-avoiding walks or polygons of n steps for which S
occurs at no more than m different indices. Then there exists an a > 0 and a b > 0 so that

lim sup
n→∞

(cn[an, S])1/n < µ and lim sup
n→∞

(gn[bn, S])1/n < µ,

where µ is the connective constant of the lattice.

Sumners and Whittington’s key observation then was that there exist proper patterns
whose inclusion guarantees nontrivial knotting. While there are a large class of such patterns,
the tight trefoil pattern T in Figure 2.9 is sufficient: Any polygon P who contains the pattern
T is guaranteed to have the knot type 31 in the prime decomposition of its knot type [P ].

This method of proof by pattern theorem was a breakthrough in the study of random
knotting. Shortly afterwards, the method of proof was extended and applied to other models
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Figure 2.10: A meander of size 5 given by the pair of non-crossing perfect matchings (α1, α2) =
((14)(23)(5 10)(67)(89), (12)(36)(45)(78)(9 10)).

including random equilateral polygons by Diao [36] and random Gaussian polygons by
Jungreis [59]. As it is then so ubiquitous, one might first expect to show that any alternative
model of random knotting satisfies the FWD conjecture.

2.4 Meanders

We will also find inspiration in another unsolved (i.e. uncounted) combinatorial model;
meanders. Meanders can be defined simply, but have proven difficult to understand fully due
to another “long-term memory” condition.

Definition 2.4. Given an oriented line L in R2, a meander of size n is a homeomorphism
class of curves in R2 which 1) have no self-intersections and 2) intersect the line L precisely
2n times.

An example of a meander is given in Figure 2.10. Although meanders do not exhibit
knotting in the same sense as self-avoiding polygons, they are a useful model of polymers.
Namely, meanders are a useful model for studying polymers which fold in on themselves [46]
such as RNA [52, 5]. Meanders are hence an interesting model in their own right.

We have an alternate definition for a meander in terms of permutations of 2n called
non-crossing perfect matchings: A meander is a pair (α1, α2) of permutations so that

1. αi is a product of n disjoint cycle permutations of length 2 for each i (the αi are perfect
matchings),

2. no two cycles (ab), (cd) in αi interlace; i.e. if we assume without loss of generality that
a < b, a < c, and c < d then exactly one of a < b < c < d or a < c < d < b (so that
a < c < b < d is forbidden; each αi is non-crossing), and

3. the product permutation α2 ◦ α1 is a cyclic permutation of 2 disjoint cycles each of
length n (the meander is connected).
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It is simple to sample a pair of permutations satisfying properties (1) and (2); such
permutations are in bijection with Dyck words [97] and counted by the Catalan numbers.
Given those, however, it is still difficult to impose property (3). This mirrors the case of self-
avoiding walks—it is easy to sample random walks but difficult to impose non-self-intersection.
These properties are “global” in the sense that one cannot ascertain whether an object satisfies
them using local information alone. They hence make understanding the models far more
difficult.

As a result, there is not yet a closed formula for the counts mn of meanders of size n.
This parallels the case of self-avoiding walks and polygons above. In fact, the asymptotic
growth of the counts mn is strikingly similar [47];

mn ∼
n→∞

C(R2)nn−α.

Similarly, exact values of R2 and α are unknown: Numerical experiments estimate that
R2 ≈ 12.262874 and quantum field theory arguments predict that α =

√
29
√

29+
√

5
12

[47] (this
exact value of α has been numerically checked [35] to a significant degree), but there is not
yet a concrete proof.

2.5 Topological maps

The goal of this manuscript is foremost to present the random diagram model as a model
for random knotting. This requires first that we formalize key notions about knot and link
diagrams previously defined loosely. The equivalence on diagrams that we imposed earlier is
precisely embedded graph isomorphism. This precisely means that the viewpoint we should
have is that of topological maps on surfaces [105, 16, 68].

2.5.1 Maps

Definition 2.5. A map with n vertices M is a (multi-)graph Γ(M) with n vertices embedded
on a surface Σ so that every connected component of Σ \ M is a topological disk. The
connected components of Σ \M are called the faces of M . If Σ is the oriented sphere, then
the map M is planar. As each face must be a disk, maps’ underlying graphs are necessarily
connected.

A map M is 4-valent (sometimes also called 4-regular or quartic) if every vertex in the
underlying graph Γ(M) has degree 4. An example of a planar map and a 4-valent planar map
can be seen in Figure 2.11

In the literature, maps are also known as cyclic graphs [13], fatgraphs [74], fat graphs [45],
and ribbon graphs [14]. Maps find use as a critical tool for studying many topics, including;
quantum mechanics [16], quantum field theory [108], moduli spaces of Riemann surfaces [74],
fiber bundles over Riemann surfaces [72], and random surfaces and metrics [40]. As a result,
maps have a rich theory—although there is still much yet unknown.

A map with n vertices decomposes as a triple M = (A,E, V ) called a combinatorial
map [28] or an arc-decomposition into arcs, edges, and vertices, where A consists of arcs
(sometimes called flags2), E consists of unordered pairs of arcs (the edges), and V consists of

2The notation of flag indicates that arcs belong to a unique vertex, edge, and face.
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Figure 2.11: Two planar maps. The map on the right is 4-valent.

n cyclic quadruples of arcs (the vertices), up to re-naming of arcs, so that each arc appears
in exactly one edge and one vertex. Maps are the same if they differ only by changing the
set A (re-indexing). These data define the embedding of a graph into a surface; the map is
planar if this surface is the sphere. If a is an arc in M , define e(a) to be the unique edge
containing a and v(a) to be the unique vertex which contains a. If the map is 4-valent, there
are precisely 4n arcs and 2n edges.

The set of edges E and vertices V of a map M can both be viewed as permutations acting
on the arcs A. E is a product of disjoint transpositions of arcs. V is a product of n disjoint
cyclic permutations of arcs, each of whom permute their arcs counterclockwise. Under this
view, the permutation F = V ◦ E consists of the faces of M ; it is a product of disjoint cyclic
permutations, where each cycle permutes the arcs around each given face clockwise. As a map
is a CW-complex structure for its embedding surface Σ, we have the relationship between
Euler characteristic χ(Σ) and the counts of vertices, edges, and faces;

χ(Σ) = |V | − |E|+ |F |.

Namely, a map which is 4-valent and planar will have precisely n+2 faces. Figure 2.12 depicts
a 4-valent planar map with

E = (0 1)(2 3)(4 5)(6 7)(8 9)(10 11)(12 13)(14 15),

V = (0 10 15 9)(1 8 2 7)(3 14 4 13)(5 11 6 12),

and
F = V ◦ E = (0 8)(1 10 6)(2 14 9)(3 7 12)(4 11 15)(5 13).

We will primarily consider planar maps, although by considering maps on any oriented
surface of arbitrary genus and applying the ideas of this work one arrives at the study of
virtual diagrams [115, 63]. We discuss extensions to the virtual theory in Chapter 8.

Symmetry complicates the study of maps. A strategy to avoid this issue is to root the
map by picking and directing a single edge:
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Figure 2.12: A planar map with its arcs labeled.

Figure 2.13: Two rooted planar maps. The map on the right is in the class of rooted knot
shadows.
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⊃

Figure 2.14: The map with marked boundary on the right is contained in the map on the left.

Definition 2.6. A rooted map is a map together with a single edge marked with a direction,
called a root edge. Equivalently, it is a map together with a marked arc, called a root arc.

Example rootings of each of the maps from Figure 2.11 are depicted in Figure 2.13.

An automorphism of a rooted map M would be required to fix the root edge, its direction,
and the orientation of the surface near the root; hence aut(M) is the trivial group. In the
M = (A,E, V ) arc-decomposition, a rooting of M is a pair (M,a) of M with an arc a. We
will assume our maps are rooted.

Maps M have a well defined notion of dual map M∗, where there is an edge (f1, f2) ∈M∗ if
the face f1 is adjacent to the face f2 in M (faces are adjacent if they share an edge along their
boundaries). This definition guarantees a bijection between the vertices of M and the faces
of M∗. Given the arc-decomposition (A,E, V ) of M , the dual map M∗ has decomposition
(A,E, (V ◦ E)−1) (the inverse is to account for face permutations in V ◦ E = F permuting
arcs in clockwise order, while vertices should permute arcs in counterclockwise order). The
dual map of a 4-regular map is a quadrangulation, i.e. a map for which the boundary of every
face is a cycle of four edges. A quadrangulation is simple if it contains no parallel edges or
loop edges (its underlying graph is simple). If a map is rooted with root arc a, so too is its
dual with the same root arc a.

Much like self-avoiding walks and polygons, maps have a notion of substructure:

Definition 2.7. A map P with a marked face of k-edges is a submap of a map M if there
exists a cycle of k edges (the cycle may repeat edges) in M so that one of the two halves of
M separated by the cycle is identical to P .

An example of a submap is given in Figure 2.14. Submaps will be the crucial ingredient
in our pattern theorem for diagrams.

2.5.2 Schaeffer’s bijection with trees

Surprisingly many classes of maps admit bijections to classes of trees [93, 12, 25, 3]. Much is
known about classes of trees; in many cases they are exactly counted and easy to sample
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Figure 2.15: A blossom tree.

uniformly. An important type of tree which is used in the enumeration of degree-restricted
maps (such as the 4-valent maps which we will consider in the following sections) is that of a
blossom tree.

Definition 2.8. A k-valent blossom tree with n nodes is a rooted, embedded tree with three
types of vertices:

1. Leaves , who have no children,

2. Buds , who have no children and are different from leaves, and

3. Nodes, who each have k children who may be either leaves or nodes, and precisely 1
additional bud child.

Buds are denoted pictorially by loose edges, and leaves by hollow arrowheads. In order
to study 4-valent maps, we will take k = 2 (in general, to study 2m-valent maps one takes
k = 2m − 2). An example of a blossom tree is given in Figure 2.15. Such 2-valent, or
binary blossom trees admit a simple recursive specification; if, for any number of nodes
` ≥ 0, T` denotes a binary blossom tree of ` nodes, T` either is the trivial tree or admits a
decomposition as depicted in Figure 2.16. It is precisely this recursive specification which
enables the enumeration and uniform sampling of these objects in such small time.

Schaeffer showed that these types of trees are bijective to classes of planar maps [93], and
has implemented this bijection as a sampler in the software PlanarMap [94]. The algorithm
goes as follows: The embedding of the tree provides a cyclic list of leaves and buds produced
by traversing the exterior of the tree in a counterclockwise direction. Iterate through the
list; when iterating over a bud followed immediately by a leaf, join the bud-leaf pair into an
edge and remove them from the list of leaves and buds. Proceed until the list consists only of
two leaves; join them into the root edge, picking either direction with equal probability. An
example of this process is given in Figure 2.17.
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Figure 2.16: A recursive decomposition for binary blossom trees.

Figure 2.17: Closure of a blossom tree by Schaeffer’s algorithm.
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Chapter 3

The Random Diagram Model

In this chapter we apply the combinatorics of maps to knot theory, in order to formally define
the random diagram model of random knotting. The model was originally formulated in [20],
and we use the notation of [24]. We begin by defining precisely what diagrams are.

3.1 Shadows and Diagrams

Definition 3.1. A map decorated by a set S, (M, s) is a map M = (A,E, V ) together with
a mapping s : V → S which associates to each vertex of M an element of S.

We can now rephrase the definitions of diagrams using the vocabulary of maps.

3.1.1 Links

We start with the (simpler) case of links.

Definition 3.2. A link shadow with n crossings is a 4-regular planar map of n vertices. We
call the vertices of a shadow crossings to line up with knot theory terminology. We will denote
by Ln the set of all n-crossing link shadows and L =

⋃
n Ln the class of all link shadows.

A link diagram with n crossings is a link shadow with n crossings, which are decorated
with a set S of crossing signs. We primarily consider S = {+,−} which yields usual link
diagrams. This is equivalent to making a choice of over-under strand information at each
vertex given a deterministic method of doing so (see Proposition 3.1), as demonstrated in
Figure 3.1. We will denote the set of n-crossing link diagrams by Ln and the class of all link
diagrams by L =

⋃
n Ln.

Similar to maps, we can view link diagrams through an arc-decomposition D = (A,E,C),
where A and E are the same, but C is the set of crossings.

As mentioned, we will primarily consider S = {+,−}, although structural theorems will
hold for any sets S. Interesting examples include,

1. Alternating link diagrams. If S = {+}, then diagrams can always be viewed as alter-
nating : Every piece of string represented by the diagram weaves over, then under, and
so on. Any link type or knot type which can be represented by such a diagram is itself
called alternating.

2. Singular link diagrams. If S = {+,−, 0} where a marking of 0 represents a double point
(singular point) for a singular link (that is, a link which only need be an immersion
rather than an embedding), we produce the set of singular link diagrams.
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(a) A figure-eight diagram viewed as a
decorated shadow.

(b) A figure-eight diagram viewed as a
knot drawing.

Figure 3.1: After choosing once and for all a way to view signs as “over-under” information
(i.e. orientation around the knot), knot and link diagrams can be drawn as usual.

3. Virtual link diagrams. If S = {+,−, v} where a marking of v represents a virtual
crossing, we produce the set of planar-embedded virtual diagrams. This is different
than the virtual case alluded to in the prior chapter—we’ll discuss both in Chapter 8.

Notation. When it is clear, we will use the term diagram to refer both to shadow and
diagram objects (as shadows are diagrams with crossings decorated by a set of one element).

Like maps, shadows and diagrams may be rooted by taking additionally an edge together
with a choice of direction (equivalently, by designating an arc), as in Figure 2.13. From here
on, maps, shadows, and diagrams will be assumed rooted unless otherwise noted.

As defined, L is just another name for the class of 4-regular planar maps counted by
vertices; itself dual to the class of rooted planar quadrangulations. Hence, the class L of link
shadows has been counted exactly [16, 105]: If `n = |Ln| is the number of link shadows of n
crossings, then:

`n =
2(3n)

(n+ 2)(n+ 1)

(
2n

n

)
∼

n→∞

2√
π

12nn−5/2.

From this the exact counts of link diagrams can be determined as well. As rooting breaks
symmetry, we have that there are exactly |S|n = 2n link diagrams (with the usual S = {+,−}
signs) to each link shadow of n crossings. If λn = |Ln|, then

λn = 2n`n =
2n+1(3n)

(n+ 2)(n+ 1)

(
2n

n

)
∼

n→∞

2√
π

24nn−5/2.

Remark. These formulas only hold in the cases of rooted link shadows and diagrams.
Symmetry complicates the counting of unrooted cases, and hence closed formulas are still
unknown. However, as these objects are asymmetric in the limit (we prove this in Section 5.1),
the exponential growth rates are equivalent.

3.1.2 Knots

Knot diagrams are the subset of link diagrams that have precisely one “link component:”
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Figure 3.2: A coloring rule for arcs defining link components.

Definition 3.3. Define an equivalence relation on arcs of a link shadow or diagram so that
two arcs are equivalent if a) they are contained in the same edge, or b) they meet at opposite
sides of a vertex. I.e. if the arcs meeting at a vertex are indexed counterclockwise as abcd,
then the arcs labeled a and c are equivalent, as are those labeled b and d. A link component
of a link shadow or diagram D is an equivalence class of arcs under this equivalence relation.
Figure 3.2 shows this equivalence as a coloring rule.

Remark. Link components can be defined entirely in the combinatorial map language as well.
Recall that for a shadow or diagram D = (A,E,C), E and C are permutations representing
the edges and crossings. Similar to how the cycles of C ◦ E represent the faces of D, each
cycle of C2 ◦E represents a traversal of a link component of D in one of two directions. There
are hence twice as many cycles in C2 ◦ E as there are link components in D. An orientation
of a link component is a choice of cycle corresponding to the component in C2 ◦ E.

For instance, the shadow in Figure 2.12 has

C2 ◦ E = (0 2 4 6 8 10 12 14)(1 15 13 11 9 7 5 3),

and hence has only one link component.

Proposition 3.1. There is a deterministic way to orient every link component of a rooted
link diagram.

Proof. Given a rooted link diagram, we prove existence by providing an example. After fixing
this strategy (or any other deterministic strategy), we will always be able to view signs in
{+,−} as over-under information.

Start with an stack S containing the pair (c0, a0) of the root arc a0 and the link component
c0 containing a0, and an empty set X of “visited” components.

Pop a pair (c, a) from S and add c to the set X. Then a immediately determines an
orientation for c—the cycle in C2◦E containing a. Initialize b := a. Consider the arc d := C(b)
contained in the component o. If o is not in X, push the pair (o, d) to the stack S. Step along
the component in the orientation direction, i.e. set b := (C2 ◦ E)(b). When b = a, break and
try popping from the stack S again. If S is empty, terminate.

This algorithm is deterministic (it depends only on the diagram and the root arc a0),
and terminates (there are only a finite number of components, and we run over each once at
most). It furthermore orients every link component; as the underlying graph of the diagram
is connected, we indeed orient and process every link component exactly once.
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(a) A positive crossing + (b) A negative crossing −

Figure 3.3: The usual way to give crossings in oriented diagrams signs is based on the cross
product between the over and under trajectories.

Definition 3.4. A knot shadow is a link shadow which consists of precisely one link component.
The set of knot shadows with n crossings is denoted by Kn and the class of all knot shadows
is denoted K =

⋃
n Kn.

A knot diagram is a link diagram which consists of precisely one link component. The
set of knot diagrams with n crossings is denoted by Kn and the class of all knot diagrams is
denoted K =

⋃
nKn.

Remark. Rooted knot diagrams have their unique link component oriented (there is a sense
of direction around the circle), so there is a natural way to translate raw sign information
into over-under crossing information by using the usual definition as the sign of the cross
product from the over trajectory to the under trajectory as in Figure 3.3.

Knot shadows have also been studied as plane (or spherical) curves [6, 7, 107, 95],
lacets [29], and knot universes [62]. Knot shadows K represent a curious, small subclass of
L . Indeed, exact counts for kn = |Kn| and κn = |Kn| are not known except by experiments
and conjectures [56, 95]:

Conjecture 3.2 (Schaeffer-Zinn Justin 2004). There exist constants µ and c such that

κn
2n

= kn ∼
n→∞

cµn · nγ−2, (3.1)

where

γ = −1 +
√

13

6
,

and µ ≈ 11.415± 0.005.

This conjecture is of similar flavor to conjectures of the counts of both self-avoiding lattice
walks and self-avoiding lattice polygons [51] in Equations 2.1 and 2.2.

3.1.3 Gauss diagrams

As a result of the “global” nature with which link components are defined, it is very difficult
to restrict classes of diagrams to a fixed number of link components. We describe an alternate
viewpoint which fixes the number of link components at the cost of losing control over
planarity and the genus of the embedding surface Σ.
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Figure 3.4: A Gauss diagram viewed as a map (left) and as a chord diagram (right). Besides
the one central vertex, crossings between edges are a visual artifact due to the projection
from a higher genus surface and are not part of the data of the Gauss diagram.
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Figure 3.5: A rooted knot shadow and its equivalent signed Gauss diagram.

Definition 3.5. A Gauss diagram [68] (also called a Gauss code [63]) is a rooted map of 1
vertex on an arbitrary, oriented surface. A signed Gauss diagram is a Gauss diagram together
with a choice of sign in {+,−} for each edge. We will denote by G the class of all signed
Gauss diagrams sized by edge.

Gauss diagrams are typically viewed as chord diagrams, as in Figure 3.4, where the
unique vertex is instead viewed as boundary of a disk containing chords. Additionally, we will
re-interpret the data of the root as a basepoint on the boundary and an orientation around
the boundary circle.

Definition 3.6. A virtual link shadow is a 4-valent map on an oriented surface Σ. A virtual
knot shadow is a virtual link shadow with precisely one link component.

There is a one-to-one equivalence between the sets of signed Gauss diagrams with n edges
and the sets of rooted virtual knot shadows with n crossings [63, 107, 69]. Restricting to the
signed Gauss diagrams which embed in the sphere, we have that the sets of sphere-embedding
signed Gauss diagrams with n edges and the sets of rooted knot shadows with n crossings
are equivalent. This provides an alternate representation of knot shadows. An example of
this equivalence is given in Figure 3.5.
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Figure 3.6: A rooted knot diagram and its equivalent signed directed Gauss diagram.

Definition 3.7. A directed signed Gauss diagram is a signed Gauss diagram together with
an additional decoration, viewed as a direction, chosen for each edge. We will denote by G
the set of all directed signed Gauss diagrams sized by edge.

By interpreting the directional data in a directed signed Gauss diagram as pointing
away from the over-strand and towards the under-strand, one obtains a one-to-one bijection
between the sets of sphere-embedding directed signed Gauss diagrams with n edges and the
sets of rooted knot diagrams with n crossings. An example of this equivalence is given in
Figure 3.6. Similar to the above case, relaxing the sphere-embedding condition describes the
case of virtual knot diagrams; we will discuss this more in Chapter 8.

The number of signed Gauss diagrams is precisely [69],

|Gn| =
(2n)!

n!
.

There are many results on necessary conditions and sufficient conditions for signed Gauss
diagrams embedding in the sphere [91, 38, 19, 103]. However, the problem of counting
sphere-embedding signed Gauss diagrams is yet unsolved—it is precisely the same problem
as counting knot shadows! This provides a new perspective on the difficulty of counting knot
shadows: It is easy to count planar link shadows, but difficult to restrict to a certain number
of link components. Equivalently, it is easy to count virtual knot shadows, but difficult to
restrict to a fixed surface (the sphere).

3.1.4 Tangles

Tangle diagrams are an important ingredient in our pattern theorem to come. They may also
be viewed in the language of maps:

Definition 3.8. A k-tangle shadow is a map embedded on a sphere which is 4-valent except
for one distinguished “external” vertex of degree 2k. A k-tangle diagram is an k-tangle shadow
decorated (at non-exterior vertices) with signs in S (usually, S = {+,−}).

A component of a tangle shadow or diagram is an equivalence class of edges under the
equivalence in Definition 3.3 with no additional equivalence at the external vertex. Some



26

Figure 3.7: A 3-tangle diagram with boundary vertex (left) and boundary vertex viewed as
disk boundary (right).

components correspond to open strands and are open, while some components correspond to
closed strand and are closed .

A tangle shadow (resp. diagram) T is contained as a subtangle, or simply contained, in
a link shadow (diagram) D if the dual of T , T ∗ (with exterior face the dual of the exterior
vertex), is a submap of D∗; for diagrams it is furthermore required that the signs of the
crossings agree.

We will view the exterior vertex of tangle shadows and diagrams as being “at infinity” so
that tangle shadows and diagrams appear to be 4-valent decorated maps with “loose” arcs in
a common exterior face called legs, as shown in Figure 3.7. This view matches up with the
previous definition of tangle diagrams in D2.

Tangle diagrams admit an arc-decomposition (A,E,C); the exterior vertex is omitted
from the crossings C (it is determined by the structure of the map). Under this view, the
faces F = C ◦ E consist of all interior faces in addition to one (large) exterior face which
contains all of the loose legs. The components C2 ◦E are slightly different than in the case of
link diagrams: There are pairs of cycles for each closed component, and there is one cycle
for each open component. An orientation for a closed component is a choice of cycle; an
orientation of an open component is determined by a choice of leg arc.

Remark. It is possible to consider the case of tangle diagrams with exterior legs which do
not end in the same face. We will discuss this in Chapter 7.

Remark. As in the case of rooted diagrams above, after picking a deterministic scheme to
orient all components (open and closed) from a tangle diagram together with choice of leg
arc, one can reconcile the view of crossing signs as over-under information.

The proof of Proposition 3.1 extends to provide an example of such an algorithm for
tangle diagrams: As we process an open component c with designated arc a after popping
from the stack, we set as the component’s orientation the previous leg arc before a (possibly
a itself) in the cycle in C2 ◦ E.

Rooted diagrams may be viewed as directed long curves or two-leg diagrams by cutting
the root edge into two directed half edges with one pointing towards its vertex (the hind leg)
and one away (the front leg) as in Figure 3.8. Two-leg diagrams are rooted 1-tangle diagrams.
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cut/splice
root edge

Figure 3.8: A rooted diagram of a trefoil, and its equivalent two-leg diagram

(a) A rooting which is two-leg-prime. (b) A rooting which is not two-leg-prime.

Figure 3.9: Depending on the rooting, a composite shadow may be two-leg-prime.

3.1.5 Primality

A key strength of the framework proposed in this manuscript is the simplicity with which the
tools presented can be applied to other interesting classes of diagram objects. To demonstrate
this, we will provide constructions for “prime” and “reduced” classes of diagrams as well;

Definition 3.9. A diagram D is prime if it has more than 1 vertex and is not 2-edge-
connected, i.e. there is no way to disconnect the underlying graph of D, Γ(D), by removing
2 edges. A diagram which is not prime is composite. A rooted diagram is two-leg-prime if
it cannot be disconnected by removing two edges, one being the root edge. This property is
dependent on the choice of root; Figure 3.9 gives a diagram for which one rooting is two-leg
prime, but the other is not.

A shadow or diagram D is reduced if it has no disconnecting vertices called isthmi .

It is important to note that prime knot diagrams can represent knot types which are
composite. The condition of being a prime knot diagram is purely graph-theoretic.

We will denote by PL the class of prime link shadows, PK the class of prime knot
shadows, PL the class of prime link diagrams, PK the class of prime knot diagrams, and
p`n, pkn, pλn, and pκn their respective cardinalities for a fixed number n of crossings.

Again, the counts of prime link shadows and prime link diagrams are known precisely.
Exact counts are known from their bijection with simple quadrangulations [2];

pλn
2n

= p`n =
4(3n)!

n!(2n+ 2)!
.
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The counts for prime knot diagrams are again unknown. Schaeffer and Zinn-Justin [95]
conjecture that the asymptotic growth rates for diagrams and shadows are of the form

pκn
2n

= pkn ∼
n→∞

cµn · nγ′−2,

where µ is the same as that for knot shadows in Equation 3.1.

3.2 Composition of tangle diagrams

In order to prove a pattern theorem for diagrams, we will require the ability to compose two
diagrams in order to produce new diagrams with certain properties. We will describe this by
first discussing methods of composition for tangle diagrams and then providing equivalences
between diagrams and tangle diagrams.

Given two tangle diagrams T = (AT , ET , CT ), S = (AS, ES, CS) with respective leg arcs
{t1, t2, . . . , t2k} and {s1, s2, . . . , s2`} and a collection of unordered pairings

µ = {(ti1 , sj1), (ti2 , sj2), . . . , (tir , sir)}

where each ti and si appears at most once, define the (k + `− r)-tangle diagram T#µS to be
the tangle diagram

T#µS = (AT ∪ AS, ET ∪ ES ∪ µ,CT ∪ CS).

Given an arbitrary choice of µ, it is possible that T#µS is non-planar or that not all leg
arcs of T#µS lie on the same face. We will define and use some specific tangle diagram
compositions which avoid these pitfalls.

3.2.1 Connect summation

Analogous to the connect sum operation on knots in space, there is a notion of diagram
connect sum on diagrams.

Definition 3.10. Given 1-tangle diagrams T, S with leg arcs {t1, t2}, {s1, s2} and a pair of
arcs (ti, sj) with i, j ∈ {1, 2}, there is a complementary pair of arcs (ti′ , sj′) with i 6= i′ and
j 6= j′. So define the connect sum of the head ti of T to the tail sj of S;

T#(ti,sj)S = T#{(ti,sj),(ti′ ,sj′ )}S.

An example of this process is given in Figure 3.10.
Given a diagram D = (A,E,C) and an edge e = (ab) in D, define the 1-tangle diagram

D \ e to be the 1-tangle diagram (A,E \ {e}, C) with leg arcs a and b.
A diagram and a choice of arc (D, a) is equivalently a 1-tangle diagram (D \ {e(a)}), a.

So given a 1-tangle diagram and a choice of “tail” leg arc (T, b), define the connect sum of T
to D by a, b to be

D#(a,b)T = (D \ e(a))#(a,b)T.
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ti
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Figure 3.10: Connect sum of the head ti of T to the tail sj of S producing T#(ti,sj)S.

(a) Diagram with marked
edge.

(b) A trefoil connect sum-
mand.

(c) After connect summa-
tion.

Figure 3.11: Connect sum of a trefoil into a figure-eight knot.

An example of connect summation of a tangle diagram into a diagram is given in
Figure 3.11.

Link components behave predictably under connect summation: If the tangle diagrams T, S
have τ, σ closed components respectively, then T#S has exactly τ + σ + 1 closed components
(independent of choice of head and tail for the connect summation). It follows then that if D
is a knot diagram and T is a tangle diagram with no closed components that D#T is always
itself a knot diagram. This can be seen as the tangle diagram D \ {e} itself has no closed
components independent of choice of e as D was a knot diagram.

3.2.2 Cyclic composition

We can extend this definition to tangle diagrams with additional leg arcs, but we will then
focus on tangle diagrams with precisely four.

Definition 3.11. Given k-tangle diagrams T, S with external arcs

{t1, . . . , t2k}, {s1, . . . , s2k},
choices ti1 and sj1 of arcs induce ordered tuples ti1 , . . . , ti2k and sj1 , . . . , sj2k by enumerating
the external arcs of T counterclockwise and S clockwise, starting with the chosen arcs. Then
with µ = {(ti1 , sj1), . . . , (ti2k , sj2k)}, define the composition to be the link diagram

T#(ti1 ,sj1 )S = T#µS.
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By this choice of µ, as T and S are both planar, so too is the composition T#µS.

The number of components in the resulting diagram will depend (in addition to the count
of closed loop components) on the ordering of the external arcs of T, S as well as the precise
matching. If however we are dealing with tangle diagrams of four leg arcs, we can be assured
the existence of a choice for µ which can guarantee some control over the number of link
components of the resultant diagram.

Consider the case where T, S are 2-tangle diagrams with τ, σ closed components respec-
tively. Let the leg arcs of T be indexed counterclockwise as {ti}4

i=1 and the leg arcs of S be
indexed counterclockwise as {si}4

i=1. For each tangle diagram, color one open strand blue
and the other open strand red. Up to changing colors or switching T with S there are four
possibilities for cyclic composition.

1. The leg arcs of both T and S are colored counterclockwise blue-red-blue-red. In this
case, the two open components always close into two distinct link components, and the
resulting number of components is τ + σ + 2. This situation is shown in Figure 3.12a.

2. The leg arcs of T are colored counterclockwise blue-blue-red-red and those of S are
colored counterclockwise blue-red-red-blue. In this case, the two open components
always close into two distinct link components, and the resulting number of components
is τ + σ + 2. This situation is shown in Figure 3.12b.

3. The leg arcs of T are colored counterclockwise blue-blue-red-red and those of S are
colored counterclockwise blue-red-blue-red. In this case, the two open components
always close into one link component, and so the resulting number of components is
τ + σ + 1. This situation is shown in Figure 3.13a.

4. Finally, if the leg arcs of T and S are both colored counterclockwise blue-blue-red-red,
the two open components always close into one link component, and so the resulting
number of components is τ + σ + 1. This situation is shown in Figure 3.13b.

Notice then that given a knot diagram D, taking a crossing x, ignoring its sign, and
designating it as the boundary vertex of a tangle diagram produces the 2-tangle diagram
denoted D \ x (there is some abuse of notation here; we are actually removing both the
crossing x, the four arcs in x, and the edges in which those arcs resided from D). Furthermore,
as D is a planar knot diagram, D \ x must have its leg arcs colored blue-blue-red-red as in
the case of T in case (3) above (as the crossing x is necessarily colored blue-red-blue-red).
Hence given any 2-tangle diagram S there exists at least one way to compose (D \ x)#S so
that it is a planar knot diagram.

3.3 The random diagram model

With this in line, we are prepared to define the random diagram model. The idea is parallel
to that for random self-avoiding polygons.
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(a) Composition of two red-blue-red-blue
tangle diagrams will always add an addi-
tional link component.
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(b) This composition of a blue-blue-red-
red and a blue-red-red-blue tangle dia-
gram will add an additional link compo-
nent.

Figure 3.12: Attachments for 2-tangle diagrams which introduce an additional link component.
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(a) Composition of a blue-blue-red-red
tangle diagram with a red-blue-red-blue
tangle diagram will never add an addi-
tional link component.
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(b) Composition of a two blue-blue-red-
red tangle diagrams will not add an addi-
tional link component.

Figure 3.13: Attachments for 2-tangle diagrams which introduce an additional link component.
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(a) Random knot diagram (b) Random link diagram

Figure 3.14: A random knot diagram and a random link diagram, each of 100 vertices.

Definition 3.12. The uniform distribution on a class of diagrams C with n crossings has
that the probability of drawing any one n-crossing diagram D is,

P(D) =
1

cn
.

Let cn([L]) be the number of diagrams which represent the link or knot type [L]. The
(uniform) random diagram model for C says that the probability of drawing the type [L] is,

P([L]) =
cn([L])

cn
.

One could devise other distributions on a fixed class of diagrams, but the important
distinction about our formalization here from previous work on random diagrams [37, 39]
is the requirement that we know which distribution we have chosen. When the class C
is a class of link diagrams, it is possible to leverage the structure of the underlying maps
to prove precise results, such as the number of alternating link types [114, 112] and the
average hyperbolic volume of an alternating link [82]. When one considers knot diagrams as
in this manuscript, much of this structure vanishes with the restriction on the number of link
components, and similar results become more difficult to prove.

An important fact about the random diagram model is that the underlying shadow and
the crossing signs which make up a random diagram are both independent random variables
on the spaces of knot shadows of n crossings and the power set of crossing signs Sn (where S
is the set of crossing signs). An example of a randomly sampled knot diagram and a randomly
sampled link diagram is given in Figure 3.14. We discuss how these diagrams were sampled
in Chapter 5.

As for random knotting in self-avoiding polygons, we can pose the FWD conjecture for
knot diagrams:
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Conjecture 3.3 (Frisch-Wasserman 1962, Delbrück 1961). As the number of crossings n
of a random knot diagram grows large, the probability that it is knotted (that is, does not
represent the knot type 01) tends to 1. Conversely,

lim
n→∞

κn(01)

κn
= 0.

As expected for “reasonable” models of physical knotting, this conjecture holds true for
the random diagram model! Chapter 4 is devoted to the proof of this theorem.

3.4 Exact tabulation of small knot diagrams

With Cantarella and Mastin, we tabulated small knot diagrams (i.e. diagrams with 10 or
fewer crossings) and calculated precise knot type frequencies in [20]. We summarize the results
below.

For the remainder of this section, we consider unrooted knot diagrams on the unoriented
sphere. The asymptotic results of Chapter 4 still follow for these objects as most diagrams
are entirely asymmetric (c.f. Section 5.1).

As mentioned before, the introduction of this symmetry makes computation more difficult;
the small size of objects considered makes this feasible. From a different view though, symmetry
was a saving grace for this tabulation: Accounting for symmetry made the number of objects
which we had to store on disk significantly smaller.

For each n ≤ 10, we tabulated the set of knot shadows—one representative per symmetry
class—through two methods (for validity checking):

1. Using Brinkmann and McKay’s plantri [17], we generated all connected planar
embedded simple graphs with vertex degrees ≤ 4. We then a) used an expansion
algorithm to produce all link shadows and b) separated out only those shadows with
one link component.

2. Also with Brinkmann and McKay’s plantri, we generated all planar simple quadran-
gulations. Planar simple quadrangulations are dual to prime link shadows; by rejecting
all shadows with more than one link component, we obtained all prime knot shadows.
Then, for each partition λ1 + λ2 + . . .+ λk = n, we produced all composite diagrams
formed from tuples of knot shadows with (λ1, λ2, . . . , λn) crossings.

Both methods are explained (and their completeness proved) in [20]. The result of either
process is the database of all knot shadows with 3 ≤ n ≤ 10 crossings.

Given this database of all knot shadows, we produced a database of all knot diagrams by:

1. For each n-crossing knot shadow representative, produce a knot diagram by picking n
signs in {+,−}, then,

2. Add the resultant diagram to the knot diagram database if it is not isomorphic to any
other diagram in the database.
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Table 3.1: Exact counts of unoriented knot objects on the unoriented sphere.

n Knot shadows Knot diagrams

3 6 36
4 19 276
5 76 2936
6 376 35872
7 2194 484088
8 14614 6967942
9 106421 105555336
10 823832 1664142836

The first step is trivial; the latter step is more complicated. The observation that knot
diagrams are isomorphic only if their shadows are simplifies computations, but the large
number of knot shadows and the computational complexity of isomorphism checking ensures
this is a computationally difficult problem. Both of these issues (time and space) are significant
obstructions to extending this exact enumeration beyond n = 10 crossings. For example,
the database of all 10-crossing knot shadows is approximately .5GB large (a database of
diagrams would require about 1.6TB), and we estimate that processing a set of 11-crossing
knot diagrams should take at least a month without further optimizations and parallelization.

Using a cluster of machines organized using Amazon Web Services under the AWS Educate
program, we were able to analyze these data. A full analysis is available in [20], but we
reprint some data with which we will compare in later chapters. First, Table 3.1 presents the
exact number of knot shadows and knot diagrams of a given size produced by our tabulation,
in line with independent calculations of Coquereaux, et al. [28] and Valette [107]. Second,
Figure 3.15 presents the exact probabilities of certain small knot types among all diagrams
of given size.

The number n = 10 of crossings is astonishingly small, and the graph of knot probabilities
does not exhibit the long term exponential decay as predicted in numerous other models
of random knotting [102]. Also present in 10-crossing diagrams is an astonishing number of
unknotted diagrams, despite the thesis of the FWD conjecture. In the following chapter, we
turn to new techniques to prove these results and enable sampling of diagrams beyond this
n = 10 barrier.



35

3 4 5 6 7 8 9

0.0001

0.001

0.01

0.1

1

# crossings in diagram

p
ro
p
or
ti
on

s
of

k
n
ot
s

(Exact) proportions of knots in n-crossing diagrams (log plot)

01
31
41
51
52

31#31

Figure 3.15: Exact probabilities of certain knot types among all diagrams of fixed size



36

Chapter 4

The Pattern Theorem

Sumners and Whittington’s proof of the FWD conjecture for self-avoiding lattice polygons
makes use of Kesten’s pattern theorem [64, 65, 71] which states that patterns—short walk
configurations—appear linearly often in long self-avoiding walks. In this chapter, we prove a
pattern theorem for random diagrams, which proves the FWD conjecture for diagram models.

4.1 The Pattern Theorem

We make use of a similar strategy: Theorem 2 of Bender et al. [11] provides a pattern theorem
for maps, provided a strategy of attaching a desired pattern. However, we must be careful in
the case of knot or link diagrams, our decorated maps with extra structure. We thus retrace
the proof while keeping this in mind.

4.1.1 Attachment

Say that if D is a link diagram, then e(D) is the number of edges in the diagram D. The
proof depends on the existence of an “attachment” scheme:

Definition 4.1. Let Q be a tangle diagram, M some class of diagrams, and H a subclass
of M . A viable attachment of the tangle diagram Q into H is a method of taking a diagram
D ∈H and producing new diagrams D′ that contain Q as a subtangle diagram satisfying:

1. For some fixed positive integer k, at least be(D)/kc possible non-conflicting places of
attachment exist. This means that at least be(D)/kc attachment operations (of Q) to a
single diagram can be “parallelized” and all performed at once to a diagram to produce
a new diagram with at least be(D)/kc copies of Q contained as subtangle diagrams.

2. Only diagrams in M are produced.

3. For any diagram produced as such we can identify the copies of Q that have been added
and they are all pairwise vertex disjoint. Identifying tangle diagrams in diagrams is
simple since a diagram contains a tangle diagram if there is some dual cycle whose
interior is the tangle diagram itself. We will consider only Q which are always pairwise
disjoint, and hence any attachment would satisfy the latter half of this condition.

4. Given the copies of Q that have been added, the original diagram and associated
places of attachment are uniquely determined. For our attachments, we will provide
suitable “inverse” operations which are themselves parallelizable (since instances of Q
are disjoint). This condition then follows.
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Our tangle diagram compositions yield then the two attachment schemes which are
relevant to the examples that follow.

Definition 4.2. Consider the 1-tangle diagram of one strand Q which is two-leg-prime and
asymmetric with tail arc b. Let M be one of:

1. all (rooted) link diagrams,

2. all (rooted) knot diagrams, or

3. provided Q is reduced, all (rooted) reduced knot or link diagrams.

Then define the attachment edge replacement by, given a diagram D and any arc a in D,
defining D′ to be the new diagram D′ = D#(b,a)Q.

Proposition 4.1. Edge replacement is a viable attachment for choices of M enumerated
above.

Proof. We consider each required property.

1. There are at least n − 1 ≥ bn/2c places of attachment to a rooted diagram D with
n edges; non-conflicting ways to connect sum Q into D are precisely the number of
non-root edges of D. Given a collection {ai}ri=1 of different arcs, none of whom share an
edge, in D, edge replacements performed in any order will produce the same diagram
(since edge replacement does not alter any arcs or edges in D besides the arc chosen
and its edge).

2. Depending on the choice of tangle diagram Q and class of diagrams M , diagram connect
sum can be shown to keep diagrams in M . Namely, provided a tangle diagram Q of one
strand, this attachment does not change the number of link components of diagrams.
Furthermore, If Q is reduced, then the introduction of Q into a diagram by connect
summation introduces no new disconnecting vertices.

3. We can identify the copies of Q inside the resultant diagram by our definition of what
it means for a tangle diagram to be included in a diagram. Provided Q is two-leg-prime,
occurrences of Q must be pairwise disjoint:

Suppose to the contrary that Q1 and Q1 are instances of Q contained as subtangle
diagrams in a diagram D which are not disjoint. The definition of being a subtangle
diagram means there exists some dual cycle of edges (e1, e2) which isolates the tangle
diagram Q1 from the rest of D; the cycle is necessarily of length 2 as Q is a 1-tangle
diagram.

Now, the condition that Q1 and Q2 are not disjoint means that, without loss of generality,
the edge e2 appears in the interior of Q2. However, Q2 \ e2 is necessarily disconnected,
which contradicts that Q was two-leg prime. So instances of Q must be pairwise disjoint.

4. Edge replacement is an invertible operation. Given an instance of Q in D which is
identified by the dual edge cycle (e1, e2), we can recover the diagram D′: Without loss
of generality, as Q is asymmetric, we can assume that e1 = (ab) is the edge which
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Pσ = Q

b′
b

σ

σ

σ

Figure 4.1: Definition of the tangle diagram Pσ in the definition of crossing replacement.

connects the tail arc b of Q to the arc a of D. Removing e1 and e2 from D yields the
pair of 1-tangle diagrams Do and Q. Denote by c the arc of Do which is not a. Then D′

is the tangle diagram Do together with additional closing edge e3 = (ac) and we have
that D = D′#(a,b)Q. We made no choices in this procedure beyond choice of instance
of Q inside D and each step was entirely local.

Hence, edge replacement is a viable attachment.

If instead we have a k-tangle diagram Q (for k > 1) we can still define an attachment into
diagrams by first joining together pairs of all but two exterior edges to produce a 1-tangle
diagram Q′ (some choice is involved here—there are infinitely many ways to close any given
tangle). This 1-tangle diagram Q′ can then be attached by edge replacement.

For classes of prime diagrams which are not closed under connect summation, we have an
alternate attachment;

Definition 4.3. Consider the nontrivial 2-tangle diagram Q that is asymmetric and at least
4-edge-connected with designated arc b. Let M be either the class of prime link diagrams or,
if Q consists of precisely two open strands and no closed components, the class of prime knot
diagrams. Then define the crossing replacement of a given diagram D and an arc a in D to
be the diagram D′ = D#(a,b′)Pσ, where σ is the sign of the crossing c(a) in D and Pσ is the
tangle diagram containing Q as defined in Figure 4.1.

Proposition 4.2. Crossing replacement is a viable attachment for choices of M enumerated
above.

Proof. We consider each required property.

1. For the class of all prime link diagrams, any choice of an arc in a diagram provides
a crossing attachment of Q which is a link diagram. For the class of all prime knot
diagrams on the other hand, each crossing has at least one choice of arc for which the
insertion of Pσ produces a knot diagram. So for any diagram and for each crossing
inside the diagram, there exists at least one viable location for crossing replacement,
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and provided crossing replacements happen at different crossings, they are independent.
So there exist at least n/2 ≥ bn/2c non-conflicting places of attachment of Q into a
diagram with n edges.

2. Provided an appropriate Q, the attachment is closed in M as we only choose appropriate
arcs.

3. We can identify the copies of Pσ inside the resultant diagram by our definition of what
it means for a tangle diagram to be included in a diagram. Suppose that P1 and P2 are
instances of Pσ which are not disjoint in D (σ does not matter and can be different for
each Pi).

That P1 and P2 are not disjoint means that the boundary cycle (e1, e2, e3, e4) of P1 must
in some part enter the interior of the instance P2. Notice that as Q is nontrivial, there
is no dual path of length 1 through P2; this implies that the subpath which is inside P2

cannot be length 1. Conversely, it cannot be length 3 (switch the roles of P1 and P2).
So the subpath would have to be of length 2; as the dual map is a quadrangulation, a
dual path of length two would have to be trivial (which cannot happen by the structure
of Pi) to begin at one face and end at the face opposite. However, by the structure of
Pi and by the fact that Q is nontrivial this is impossible.

4. Crossing replacement is an invertible operation. Given an instance of Pσ in D which is
identified by the dual edge cycle (e1, e2, e3, e4), we can recover the diagram D′: Without
loss of generality, as Pσ is asymmetric, we can assume that e1 = (ab′) is the edge which
connects the tail arc b′ of Pσ to the arc a of D. Removing e1, e2, e3, and e4 from D yields
the pair of 2-tangle diagrams Do and Pσ. Denote by x, y, z the arcs counterclockwise
around Do after a. Then D′ is the tangle diagram Do together with the four arcs brought
together into a crossing x with sign σ identified from Pσ. We have that D = D′#(a,b′)Pσ.
We made no choices in this procedure beyond choice of instance of Pσ inside D and
each step was entirely local.

Hence, crossing replacement is a viable attachment.

4.1.2 Pattern theorems for diagrams

Given a generating function F , let r(F ) be its radius of convergence. Being able to attach
desired subtangle diagrams as above yields;

Theorem 4.3. Let M be some class of decorated map on any surface and let Q be a tangle
diagram that can be contained in diagrams in M . Let M(x) be the generating function by
the number of edges for M . Let H(x) be the generating function by the number of edges for
those decorated maps D in M that contain less than ce(D) pairwise disjoint copies of Q; call
this class H . Suppose there is a viable attachment for Q into H . If 0 < c < 1 is sufficiently
small, then r(M) < r(H). The diagrams may be rooted or not.

The proof of the theorem makes use of a lemma of Bender et al.:

Lemma 4.4 ([11], Lemma 3). If
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1. F (z) 6= 0 is a polynomial with non-negative coefficients and F (0) = 0,

2. H(w) has a power series expansion with non-negative coefficients and 0 < r(H) <∞,

3. for some positive integer k the linear operator L is given by L (wn) = zn(F (z)/z)bn/kc,
and

4. G(z) = L (H(w)),

then r(H)k = r(G)k−1F (r(G)).

The proof of the theorem then remains almost unchanged from the original theorem. The
class M of diagrams and tangle diagrams P considered determine the attachment scheme.

Proof of Theorem 4.3.. Let G(z) be the generating function which counts the ways by edges
of attaching some number between 0 and bn/kc copies of Q to diagrams in M counted by
H(x) =

∑
hnx

n. The method of attachment leads to the relation G(z) = L (H(w)), with L
as defined in the lemma, where F (z) = z + zq and q, is the number of edges added when a
copy of Q is attached, as

G(z) =
∑

Y ∈H

ze(Y )
(
1 + zq−1

)be(Y )/kc
= L (H(w)).

Let gn be the coefficients of G(z).
SupposeD ∈M containsm copies ofQ. By property (3) of our attachment,m ≤ n = e(D).

If D had been produced from some diagram K in H by our attachment process, we can
find all possible K by removing at least m − cn copies of Q from D, as for any such K,
m− cn < m− ce(K). It is possible to bound from above the number of ways to do this by

∑

j≥m−cn

(
m

j

)
=
∑

k<cn

(
m

k

)
<
∑

k<cn

(
n

k

)
≤ n

(
n

cn

)

≤ n(ne)cn

(cn)cn
= n

(e
c

)cn
=: tn.

If M(x) =
∑
mnx

n, then this means that tnmn ≥ gn, so that mn ≥ gn/tn. Hence,

1/r(M) = lim sup
n→∞

m1/n
n ≥ lim sup

n→∞
(gn/tn)1/n =

lim supn→∞ (gn)1/n

limn→∞ (tn)1/n
≥ (c/e)c/r(G).1

By the prior lemma, r(H)k = r(G)k(1 + r(G)q−1) so that

r(H)/r(M) ≥ (1 + r(G)q−1)
1/k

(c/e)c.

As there are fewer than 12n planar maps with n edges [10], a trivial bound on the coefficients
hn of H(x) is hn ≤ (12n)(κn/2) where κ ≥ 1 is the size of the set of decorations on the vertices

1The power of 1/n on lim supn→∞ (gn) is missing in the original proof of Bender et al.
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of the diagram (in the scope of this paper, κ = 2 or 1). This provides the bound r(H)k ≥
1/(12

√
κ)

k
. Then, as limc→0+ (c/e)c = 1 and r(G)k(1 + r(G)q−1) = r(H)k ≥ 1/(12

√
κ)

k
so

that
r(G) ≥ 1/(12

√
κ(1 + r(G)q−1)

1/k
) ≥ 1/(24

√
κ),

it follows that r(H)/r(M) > 1 for sufficiently small c, completing the proof of the theorem.

The conclusion is about radii of convergence of two power series; application of the
Cauchy-Hadamard theorem, together with one additional hypothesis, gives the stronger
result:

Theorem 4.5 (Pattern Theorem; [11]). Suppose that for the class M and the tangle Q all
of the hypotheses of Theorem 4.3 apply. Additionally suppose that M grows smoothly, i.e.
that, with mn = |Mn|, the limit limn→∞m

1/n
n exists.

Then there exists constants c > 0 and d < 1 and N > 0 so that for all n ≥ N , we have
that the number of diagrams mn and the number hn of such diagrams which contain fewer
than cn copies of the tangle Q obey;

hn
mn

< dn.

I.e., the tangle Q is ubiquitous.

Because of Euler’s formula, the number of vertices, edges, or faces in a link shadow or
planar quadrangulation is entirely determined by choosing any one cardinality. Hence, we
can size shadows and diagrams by the number of vertices and still keep the above results.

4.2 Smooth growth

In order for the (stronger) corollary to hold, we require that the class of diagrams grow
smoothly, i.e. that (for mn = |Mn|) the limit

lim
n→∞

m1/n
n

exists.
The key in proving this behavior is the strengthening of Fekete’s lemma [87, 110] reproduced

below:

Theorem 4.6 (Wilker-Whittington 1979 [110]). Let f(m) be a function with limm→∞m
−1f(m) =

1 and {an} be a sequence. Suppose that anam ≤ an+f(m) for all n,m sufficiently large and

that a
1/n
n is bounded above (for all of our cases we have the trivial bound for all planar maps

of 144). Then
lim
n→∞

an
1/n = lim sup

n→∞
an

1/n = 1/r <∞

where r is the radius of convergence of the series
∑∞

n=1 anz
n and furthermore an ≤ (1/r)f(n).

For f(m) = m we recover the usual result. Observe as well that functions f(m) = m+ k
satisfy the hypothesis for fixed k.
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(a) A tangle diagram Φ which
can be attached into diagrams
in L by connect sum.

(b) A tangle diagram X which
can be attached into diagrams
in PL by crossing replace-
ment.

Figure 4.2: Examples of tangle diagrams for attachment to link diagrams.

4.3 The Pattern Theorem for rooted link diagrams

As noted, the classes L of rooted link shadows and PL of rooted prime link shadows have
been counted exactly; they both hence grow smoothly. Pattern theorems for these two classes
hence follow given satisfactory tangle diagrams P and attachment operations.

4.3.1 Rooted link diagrams

For the class of all rooted link shadows and any two-leg-prime 1-tangle diagram P , the
connect summation with P is a viable attachment, c.f. Proposition 4.1. Hence we conclude
that asymptotically almost surely any two-leg-prime tangle diagram P is contained linearly
often in an arbitrary link diagram D.

From this we see that:

Proposition 4.7. Almost every rooted link diagram has more than one component. Addi-
tionally, almost every rooted link diagram is neither the unknot nor a split link of unknots. In
other words there exists d < 1 and N > 0 so that for n ≥ N ,

P(a rooted link diagram L with n crossings has one component) < dn,

P(a rooted link diagram L with n crossings represents the unknot) < dn,

and

P
(

a rooted link diagram L with n crossings
represents a split link of unknots

)
< dn.

Proof. Consider the attachment of tangle diagram Φ in Figure 4.2a. This attachment satisfies
the hypotheses of Theorem 4.5 and the class of rooted link diagrams grows smoothly, so there
exists c > 0, d < 1, and N > 0 so that for all n ≥ N ,

P(a rooted link diagram L with n crossings contains ≤ cn copies of Φ) < dn.

Now, any of the conditions enumerated in the proposition would imply that the rooted link
diagram with n crossings contains precisely no copies of the tangle diagram Φ; but this
condition happens with probability less than dn, providing the result.
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4.3.2 Rooted prime link diagrams

In the case of rooted prime link diagrams, however, connect summation with any nontrivial
1-tangle diagram P immediately removes the prime condition. Hence in this case we must use
crossing replacement with 2-tangle diagrams that are prime, which is viable by Proposition 4.2.
We can see then that:

Proposition 4.8. Almost all rooted prime link diagrams consist of more than one component.
Additionally, almost all rooted prime link diagrams are neither unknots nor split links of
unknots.

Proof. Consider the tangle diagram X in Figure 4.2b. For a rooted prime link diagram to
satisfy any of the claims above, it would have to not contain a copy of X. However, X
can be attached by crossing replacement into the class of rooted prime link diagrams in a
way satisfying the hypotheses of Theorem 4.5. Furthermore, the class of rooted prime link
diagrams grows smoothly, leaving the result.

4.4 The Pattern Theorem for rooted knot diagrams

Unlike classes of rooted link diagrams, K and its subclasses often do not have exact counting
formulas. Hence in these cases we not only must provide satisfactory attachment schemes for
tangle diagrams, we must additionally prove smooth growth of the counting sequences.

4.4.1 Rooted knot diagrams

Provided that the tangle diagram P consists of precisely one component, Proposition 4.1 has
that the class K of all rooted knot diagrams is closed under connect sum with P .

So it only remains to prove that the class of knot diagrams grows smoothly for pattern
theorem results to follow. It suffices to prove that the class of rooted knot shadows grow
smoothly as there exist precisely 2n rooted knot diagrams for each rooted knot shadow of n
crossings.

Theorem 4.9. The class K of rooted knot shadows grows smoothly. That is, the limit
limn→∞ k

1/n
n exists and is equal to 1/r(K).

Additionally, the class of reduced rooted knot shadows grows smoothly.

Proof. Observe that knkm ≤ kn+m for any pair n,m as given any two knot shadows of size
n,m, say K1 and K2 respectively, we have the injection defined as in Figure 4.3 where the
shadows are joined end-to-end. As n and m are known quantities, the separating edge between
K1 and K2 in the product is determined, and the inverse is well defined on the image.

The result then follows by the above result on super-multiplicative sequences, with
f(m) = m. This proof works for both the case of general knot diagrams, as well as the case
of reduced rooted diagrams, as connect summation does not introduce any new isthmi.

Proposition 4.10. Almost every rooted (general or reduced) knot diagram is knotted. Fur-
thermore, almost every rooted (general or reduced) knot diagram contains any 1-component,
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K1 × K2 = K1 K2

Figure 4.3: The injection from Kn×Km into Kn+m. The edge between K1 and K2 is the edge
connecting the nth and (n+ 1)th crossings (by traversal order) and provides a well-defined
inverse.

prime 1-tangle diagram P “linearly often:” For any such prime 1-tangle diagram P , there
exists N ≥ 0 and constants d < 1, c > 0 so that for n ≥ N ,

P(a knot diagram K contains ≤ cn copies of P as connect summands) < dn.

Proof. The first statement will follow immediately from the second, given a prime 1-tangle
diagram corresponding to a prime knot diagram which is not an unknot such as the prime
trefoil tangle diagram T in Figure 3.11b. The second is a corollary of Theorems 4.5 and 4.9:
Let P be a prime 1-tangle diagram which can be found as a connect summand of a knot
diagram (i.e., it has one link component). If mn is the number of knot diagrams, then there
exists c > 0, d < 1, and N > 0 so that for all n ≥ N , hn

mn
< dn, where hn is the number of

knot diagrams which contain at most cn copies of P as connect summands. This ratio is
precisely the probability in the second statement.

The proof follows for reduced rooted knot diagrams precisely the same.

4.4.2 Rooted prime knot diagrams

We can also show that, given a prime 2-tangle diagram P with reasonable assumptions, we
can obtain a pattern theorem for P inside of the class PK of prime knot diagrams. The viable
attachment here is crossing replacement discussed earlier.

It does however remain to be shown that the class PK grows appropriately smoothly.
We only need apply a slight modification to the prior argument.

Theorem 4.11. The class PK of prime knot shadows grows smoothly.

Proof. For any n > 3 a prime shadow will have no monogons, and we can define a composition
on prime shadows as in Figure 4.4.

This operation adds precisely two vertices and is invertible on its image. We will define
the inverse of a diagram D to be the diagram obtained by performing a “flat Reidemeister II
move” to delete the bigon containing the arc labeled g1 and then by deleting the edge (bc)
between vertices indexed m and m + 1 by traversal order starting at the tail d, if such a
diagram exists and is valid. This process is depicted in Figure 4.5. This inverse proves that

pnpm ≤ pn+f(m),
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K1
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a
× K2
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c
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K
1 K

2

a d

b

c

g1

Figure 4.4: The composition × for prime shadows from PK n ×PK m into PK n+m+2.

K
1 K

2

a d

b
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g1 −→ K
1 K

2

a d

b

c

−→ K
1 K

2

a d

b

c

Figure 4.5: The inverse of the composition × for prime shadows. If the map is in the image
of ×, the arc g1 uniquely determines the bigon to remove, and the disconnecting edge (bc) is
determined.
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Figure 4.6: A prime 2-tangle diagram whose insertion into a diagram guarantees knottedness,
as it adds a 31 connect sum component.

where f(m) = m + 2. This, together with the above theorem on super-multiplicativity
completes the proof.

Hence,

Proposition 4.12. Almost every rooted prime knot diagram is knotted. Furthermore, almost
every rooted prime knot diagram contains any 2-component, prime 2-tangle diagram P
“linearly often:” For any such prime 2-tangle diagram P , there exists N ≥ 0 and constants
d < 1, c > 0 so that for n ≥ N ,

P(a prime knot diagram K contains ≤ cn copies of P ) < dn.

Proof. The proof of the latter statement is nearly identical to that of Proposition 4.10, except
with crossing replacement instead of connect summation. A 2-tangle diagram whose insertion
guarantees that a diagram be knotted is depicted in Figure 4.6, from which the former
statement follows.
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Chapter 5

Experimental Data

Using Schaeffer’s bijection for maps and trees in Section 2.5.2 we can produce an algorithm
for the uniform sampling of rooted knot diagrams. With this, we can explore knotting
probabilities well beyond our tabulation data in Section 3.4. Of course, the tabulation data
accounted for symmetry—how do the two models compare? Our pattern theorem answers
this in the large crossing limit; most diagrams have no symmetry, and hence any results hold
(probabilistically) for the unrooted case.

5.1 Asymmetry of diagrams

Richmond and Wormald [89] proved that “almost all maps are asymmetric”, provided the
class of maps has a pattern theorem. Indeed, this theorem applies to classes of shadows
considered in this paper. Notice then that classes of diagrams then too are asymmetric as
decoration imposes additional constraints on symmetry. In this section we provide explicit
constructions proving this result.

Say a tangle shadow P is free in a class of rooted knot shadows C if any knot shadow
obtained by removing a copy P1 of P from a shadow K so that any cyclic composition
(K \ P1)#µP is in C .

We then restate Richmond and Wormald’s result as it pertains to shadows:

Theorem 5.1 (Richmond-Wormald 1995). Let C be a class of rooted shadows. Suppose that
there is a tangle shadow P such that for all shadows in C , all copies of P are pairwise disjoint
and such that P

1. has no reflective symmetry in the plane,

2. satisfies the hypotheses for the Pattern Theorem 4.5 for C , and

3. is free in C

Then the proportion of n-crossing shadows in C with nontrivial automorphisms (that need
not preserve neither root nor orientation of the underlying surface) is exponentially small.

It has been suggested without proof in [28, 95] that classes of knot shadows are almost
surely asymmetric. We can now prove these results for K and PK by providing appropriate
tangle shadows P .

Proposition 5.2. The proportion of knot shadows in K with nontrivial automorphisms
is exponentially small. Additionally, the proportion of knot diagrams in K with nontrivial
automorphisms is exponentially small.

This is true for reduced knot shadows as well.
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Figure 5.1: The (prime, reduced) 1-tangle shadow P which shows that knot shadows are
asymmetric.

Figure 5.2: Choice of 2-tangle shadow P for proving that prime knot shadows are asymmetric.

Proof. Let P be the 1-tangle shadow in Figure 5.1. P is a viable candidate for the Pattern
Theorem for knot shadows under connect sum attachment.

Furthermore P has no reflective symmetry by inspection, and any of the ways of attaching
P keep the object in the class of knot shadows (as P is a 1-tangle shadow consisting of one
component). This proves that knot shadows are asymmetric. The proof for reduced knot
shadows is identical.

Proposition 5.3. The proportion of prime knot shadows in PK with nontrivial automor-
phisms is exponentially small. Additionally, the proportion of knot diagrams in PK with
nontrivial automorphisms is exponentially small.

Proof. Take P as in Figure 5.2. Then P consists of exactly two link components and is of
blue-red-blue-red type; any way of replacing a vertex in a knot shadow with a 2-tangle shadow
of blue-red-blue-red type keeps the number of link components constant and hence is free.
Furthermore, P satisfies the hypotheses for Theorem 4.10 together with crossing replacement.
Finally, asymmetry of P proves the claim.

Application of the above theorems provides us with the following corollary which enables
us to transfer any asymptotic numerical results or sampling results on rooted diagrams to
unrooted diagrams.
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Corollary 5.4. Let L be a uniform random variable taking values in the space Kn or Ln.
Then there exist constants C, α > 0 so that P(autL 6= 1) < Ce−αn. Hence, rooted diagrams
behave like unrooted diagrams and there are a.a.s. 4n rooted diagrams to each unrooted
diagram.

Indeed, link diagrams with n vertices are dual to quadrangulations with n+ 2 faces; there
are n + 2 ways of choosing the “exterior” root face and then 4 ways of rooting the edges
around this chosen face. Hence if ˜̀

n, k̃n are the counts of unrooted link or knot diagrams we
have that in the limit,

˜̀
n ∼
n→∞

`n
4(n+ 2)

and k̃n ∼
n→∞

kn
4(n+ 2)

.

5.2 Sampling random diagrams

We have added to the space curve and knot diagram toolkit plCurve [9] new routines for
sampling and inspecting (random) knot diagrams. We describe in this section the functionality
which was added—and how it was applied to generate data for the following section.

Gilles Schaeffer’s PlanarMap software [94] is able to uniformly sample in O(n) time many
different classes of maps including both rooted 4-valent planar maps (rooted link shadows)
and rooted 4-connected 4-valent planar maps (rooted prime link shadows) by using a bijection
between maps and objects called blossom trees [95, 93] discussed prior in Section 2.5.2.

We have incorporated PlanarMap as a library into plCurve. This has enabled functionality
in plCurve to uniformly sample rooted link diagrams (resp. rooted prime link diagrams) with
n crossings by:

1. Sample a rooted link shadow (resp. rooted prime link shadow) with the aid of PlanarMap
uniformly in O(n) time. (Additional details on how PlanarMap does this, especially in
the context of plane curves, can be found in [95].)

2. Sample a sign vector in {+,−}n uniformly. This information, together with the link
shadow sampled in the step prior, uniquely yields a rooted link diagram or rooted
prime link diagram sampled uniformly from the set of n-crossing rooted link diagrams
or n-crossing rooted prime link diagrams, respectively.

As the condition of being a knot diagram or shadow is independent of choice of sign,
we can furthermore introduce after step 1 a rejection of all shadows with more than 1 link
component. Rejection does not affect the probabilities which with valid diagrams are sampled,
and hence this augmented procedure uniformly samples rooted knot diagrams (resp. rooted
prime knot diagrams).

Culler and Dunfield’s PLink software [30] is able to produce images of knot and link
diagrams using an orthogonal projection routine. This enables one to visualize individual
diagram objects. There are two important caveats to this visualization:

1. Currently, PLink does not support rooting of edges.

2. PLink can produce a number of geometrically different embeddings for any given
diagram object, all of which are combinatorially equivalent.
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Figure 5.3: A randomly sampled knot diagram with 150 crossings, presented in a particular
orthogonal projection. The drawing itself was produced using PLink.

The plCurve software has an interface to PLink which enables viewing graphical represen-
tations of the diagrams sampled. An example of such a knot diagram with 150 crossings is
presented in Figure 5.3.

The data below was gathered from the following experiments:

1. First, for each 10 ≤ 5n ≤ 60, we attempted to gather 500,000 uniform n-crossing rooted
knot diagram samples, with 49 tries to sample a knot diagram per sample. This means
that for each of the 500,000 calls to sample a rooted knot diagram, we generated at
most 49 rooted link shadows, rejecting shadows until either a) a rooted knot shadow
was sampled, or b) 49 unsuccessful attempts were made. This data is exhibited in
Figures 5.4a, 5.5, and 5.7a.

We further sampled precisely 20,000 diagrams for all 65 ≤ 5n ≤ 100 for the curve fitting
data in Figure 5.8, Table 5.1, and Figure 5.9.

2. A similar experiment was run, for all 5 ≤ 5n ≤ 60 with 49 attempts, except we sampled
rooted prime knot diagrams by rejection sampling on rooted prime link diagrams as
described above. This data is exhibited in Figures 5.4b, 5.6, and 5.7a.

3. To detect the ratios of knot diagrams to link diagrams, another experiment was run
wherein for each 10 ≤ n ≤ 65, we sampled uniformly 100,000 rooted link diagrams. The
same was done for rooted prime link diagrams. This data is the basis for Figure 5.7b.

Knots were classified by their HOMFLY polynomial, which distinguishes knots of the types
studied (01, 31, 41, 51, 52, 31#31) for diagrams of low crossing number. HOMFLY polynomials
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are computed for diagrams using the software lmpoly of Ewing and Millett [42] implemented
within plCurve. For larger diagrams, the HOMFLY polynomial is not necessarily a complete
invariant. However, these clashes are expected to be rare and hence immaterial for the
analysis that follows. As discussed prior, it is believed at least that the HOMFLY polynomial
distinguishes the unknot; a counterexample would disprove the Jones Conjecture, and would
be a monumental discovery by itself1.

We note additionally that our data ignores chirality of knot types: The knot types 31, 51, 52

admit both left- and right-handed chiralities (which are distinguished by the HOMFLY
polynomial), but the chirality is ignored as the probability of the two mirror-images are
identical in the diagram model. Finally, under the composite knot type 31#31 is data for both
the granny knot, its mirror image, and the square knot, all of whom have equal probability
as well. As a result, the granny knot (of either chirality) is immediately twice as likely as the
square knot.

5.3 Knotting in large random diagrams

A typical concern with results on asymptotic behavior is whether it only applies to knot
diagrams with an absurd number of crossings. This is common when discussing physical
knotting—most polymers are not infinitely long and hence exhibit only finite complexity!
However, exact and numerical results show that the asymptotic behavior we have discussed
(namely the FWD conjecture) is actually attained very quickly.

5.3.1 Asymmetry in diagrams

A critical example of this is that almost all 10-crossing knot diagrams have no nontrivial
automorphisms. This is exhibited in Figure 5.4, where knot diagrams with at least 8 crossings
and prime knot diagrams with at least 13 crossings have nearly no symmetries. Hence while
it is infeasible to sample unrooted knot diagrams by enumeration, by Corollary 5.4 sampling
rooted knot diagrams is greatly effective.

5.3.2 Knotting in diagrams

We will now consider relative appearances of various knot types among knot diagrams. This
expands beyond our results in Section 3.4. Although we no longer have exact numerics, we
can break past the 10-crossing barrier with relative ease and good precision. Compare the
chart in Figure 5.5 to Figure 3.15 in Section 3.4 and Table III in [20].

Of note is the exponential decay of the proportion of unknots 01 as the number of crossings
grow large. In fact, data shows that the number of (both left- and right-) trefoils 31 exceeds
that of the unknot 01 at around n = 44 crossings. Additionally, the trend for the square
and granny knots, labeled 31#31, has it decaying at a far slower rate than any of the prime
knot types. This is in line with conjectures for models of random knots that the growth
rates of knot types K should accrue an additional polynomial growth factor of n for each
prime knot type in the decomposition of K [88]. Also of note is the so-called “51, 52 inversion,”

1A recent paper of Tuzun and Sikora has verified the conjecture up to 22 crossings [106], so our
data on the unknot is accurate at least up to and including n = 22.
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Figure 5.4: Automorphisms in knot diagrams decrease exponentially quickly.
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n = 10 to n = 100.
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Figure 5.6: Probabilities of some typical knot types in prime diagrams as the number of
crossings varies from n = 5 to n = 60.

where the knot 52 is more likely than the torus knot 51. This was exhibited in the earlier
exact data of [20] and persists through the entire scope of the data gathered. We present a
more thorough examination of this data with comparisons to other models in the following
Section 5.3.3.

Our rejection sampling methods additionally apply in the case of sampling knot diagrams
with different graph-theoretic constraints. For instance, it extends to provide a sampler for
prime knot diagrams, which have underlying map structure which is 4-edge connected. As
dictated by Proposition 5.3, the number of asymmetries of prime knot diagrams tends to
zero exponentially quickly as in Figure 5.4. We also present data for the proportions of
knots in prime diagrams in Figure 5.6. While the precise numerics differ, notice that prime
diagrams exhibit the same interesting behavior as generic diagrams discussed prior. Namely,
(1) unknots are exponentially rare and become less prevalent than trefoils (albeit sooner in
the case of prime diagrams, occurring at around n = 30 crossings), (2) the composite square
and granny knots show slower decay than knots of prime type, and (3) the 51, 52 inversion.

An observation from running the above experiments is that knot diagrams appear to be
more prevalent in prime diagrams than generic knot diagrams! Indeed, nearly all rejection
samples of prime knot diagrams are successful (see Figure 5.7a) as opposed to the 50%
success rate of sampling generic diagrams of 64 crossings. A more precise computation of the
proportion of knot diagrams to link diagrams is exhibited in Figure 5.7b, where we can see
that there is indeed a far greater proportion of knot diagrams in the prime diagram case to
the generic, at least up to 65 crossings. Fitting the curve kn/`n = Cµnnα to each of these
data sets yields C = 1.26 ± 0.01, µ = 0.9503 ± 0.0002, a = −0.287 ± 0.005 in the generic
case and C = 0.99± 0.03, µ = 0.9749± 0.0006, a = −0.17± 0.01 in the prime case. In the
generic case, multiplying by the (known) number of link shadows yields that the exponential
growth of knot shadows is approximately 12µ = 11.404± 0.0024 close to that of prior work of
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Figure 5.7: The exponential decay of knot diagrams among link diagrams makes rejection
sampling more difficult as the number of crossings increases.

Jacobsen and Zinn Justin [56] discussed in Section 3.1.2 and that the power law growth term

is a− 5/2 = −2.287± 0.005. This differs from the conjectured value of −1+
√

13
6
− 2 ≈ −2.67,

and suggests that further data is required for an adequate fit. Applying the same analysis
to the prime case yields that the exponential growth rate of prime knot shadows should be
24µ = 23.40± 0.0145 and the power law growth term to be a− 5/2 = −2.67± 0.01, which

agrees rather well with Schaeffer and Zinn Justin’s conjectured value of −1+
√

13
6
− 2 ≈ −2.67.

Hence it is worth summarizing these interesting properties of the prime knot diagram
model. First, prime link diagrams admit exact enumeration like general link diagrams and are
hence easy to sample. In addition, there is a higher success rate of sampling knot diagrams
inside of prime diagrams as opposed to general diagrams. Second, the difficulty of inserting
“boring” structure into prime knot diagrams suggests that there is far more variety in the knot
types which arise than in the general case. So, prime diagrams are a natural class to find
diagrams representing exotic knot types with large minimum crossing number. Some evidence
to this is the fact that alternating, prime knot diagrams are minimal in that they have the
fewest number of crossings over all diagram representations of their knot type. Finally, the
smaller size of the class of prime diagrams (as opposed to the general case) suggests that
fewer samples may be required to have a better statistical understanding of the space.
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Table 5.1: Parameters for the curve fits in Figure 5.8. Compare, e.g., to Table II in [102]
which presents similar data for the model of Gaussian random polygons.

Knot type [K] C[K] µ0 α

01 1.026± 0.009 (9.524± 0.002)× 10−1 3.090± 0.004
31 (1.32± 0.08)× 10−2 (9.434± 0.008)× 10−1 3.36± 0.03
41 (1.1± 0.1)× 10−3 (9.36± 0.02)× 10−1 3.85± 0.06
51 (1.4± 0.4)× 10−5 (9.23± 0.03)× 10−1 4.9± 0.1

51, n ≥ 30 (1.1± 0.3)× 10−4 (9.38± 0.02)× 10−1 4.15± 0.09
52 (6± 1)× 10−5 (9.24± 0.03)× 10−1 4.7± 0.1

52, n ≥ 30 (4.7± 0.9)× 10−4 (9.41± 0.01)× 10−1 3.92± 0.07
31#31 (4± 1)× 10−6 (9.27± 0.03)× 10−1 4.4± 0.1

31#31, n ≥ 30 (2.8± 0.4)× 10−5 (9.406± 0.009)× 10−1 3.74± 0.05

5.3.3 Expected behavior and comparisons to other models

As noted by many prior authors [102, 88], it is expected that, for a fixed knot type [K]
with a factorization into N[K] components, the probability pn([K]) that a knot diagram of n
crossings is of type [K] obeys asymptotically

pn([K]) = C[K]µ
n
0n

α−3+N[K]

for a constant C[K] depending on [K], and constants µ0, and α which are expected to be
independent of [K]. For the various knot-type probability data gathered in Figure 5.5 above,
we used scipy’s [58] least-squares fitting algorithm to fit a curve of the form above. For
latter types, we provide two fits; one using all available data and one only using points with
n ≥ 30. These fits are presented graphically in Figure 5.8 and the parameter data is provided
in Table 5.1. Universality suggests that the parameters µ0 and α for each fit should all be
close, which they appear to be.

A stronger concept of universality for random knot models discussed by Rechnitzer and
Rensburg in [88] posits that among models of random knotting that although the exponential
growth rate µ0 may change, for any knot types [K1] and [K2] which decompose into the same
number of prime components the ratios pn([K1])/pn([K2]) may be universal. While their
results suggest that their conjecture holds for different lattice polygon models of knotting,
our data is strong evidence that the conjecture does not extend to the knot diagram model.
Fits depicted in Figure 5.9 suggest that the limiting ratios pn(31)/pn(41) ≈ 2.4632± 0.0001,
pn(31)/pn(51) ≈ 4.651± 0.002, and pn(41)/pn(51) ≈ 1.8872± 0.0004, all of which are orders
of magnitude different from the lattice model ratios of Rensburg and Rechnitzer [88].
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Chapter 6

Knotted Spatial Graphs

It is very simple to extend and change the diagram model in order to consider different topics
in knot theory. As a demonstration, in this chapter we extend the diagram model to study
knotted objects with intrinsic topology different from the circle S1. In the following chapter
we will explore an interesting case where the intrinsic topology is that of an interval.

We present now results on the general case of diagrams representing objects of fixed,
1-dimensional topology into the 3-sphere, S3. This corresponds to the theory of knotted
spatial graphs.

6.1 Definitions

By a graph, we mean a pair G = (V,E) of unlabeled vertices and edges , where an edge is one
of:

1. An unordered pair (v1, v2) of vertices representing a path between v1 and v2; v1 and v2

need not be distinct (edges can be loops).

2. A single (v1), corresponding to an edge which is connected to a vertex at only one end
(and is loose at the other); this type of edge is a loose edge.

3. An interval I which is not connected to any vertices.

4. A closed circle O which is not connected to any vertices.

A graph can have duplicate edges (it is actually a multi -graph). Graphs need not be connected.
An example of such a graph is given in Figure 6.1. Finally, we will assume that any such
graph G has at least one edge and only vertices with at least one edge connection.

Definition 6.1. A spatial graph is an embedding γ of a graph G into the 3-sphere S3.

Knots and links are easily seen to be special cases of spatial graphs. As in these cases, we
can consider embeddings of arbitrary spatial graphs up to ambient isotopy. We will call an
equivalence class of embeddings [γ] of a graph G under ambient isotopy a knot type for G.

Let ∼ be the coloring equivalence relation on arcs given in Section 3.1.2. Let M =
(A,E, V ∪ C) be a map with two distinct types of vertices, vertices (which may be of any
degree) and crossings (which are all 4-valent). Extend ∼ to the arcs of this map by only
applying at crossings and edges (not vertices). Then the following is true about the set
R = A/ ∼ of meta-edges of M : There are four possibilities for a meta-edge [a] in R, lining
up with the types of edges in the definition of graph above:
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Figure 6.1: An example graph which is a union of three connected components.

1. Among the arcs in [a], there are exactly two arcs which are attached to vertices v1, v2

in V (v1 and v2 may be the same vertex). Furthermore, all arcs in [a] are contained in
edges of E. In this case we say that the meta-edge [a] = [v1, v2] connects v1 and v2.

2. There is exactly one arc in [a] attached to a vertex v1 in V , and exactly one arc in
[a] which contained in any edge in E. In this case, we say the meta-edge [a] = [v1] is
connected to the vertex v1 and corresponds to a loose edge.

3. There are no arcs in [a] attached to a vertex in V , and there are two arcs which are not
contained in any edge in E. This meta-edge corresponds to an interval-type edge.

4. There are no arcs in [a] attached to a vertex in V , and all arcs of [a] are contained in
an edge in E. This meta-edge corresponds to a closed circle-type edge, and is precisely
a link component as defined prior.

Definition 6.2. Let G = (EG, VG) be a graph. A spatial graph shadow of n crossings for G
is a planar map M = (A,E, V ∪C) of arcs A, edges E, vertices V , and n crossings C so that
there are one-to-one correspondences ν : V → VG and η : R→ EG with the property that:

1. For a meta-edge [v1, v2] ∈ R, η([v1, v2]) = (ν(v1), ν(v2)).

2. For a meta-edge [v1] ∈ R, η([v1]) = (ν(v1)).

3. ν bijectively maps interval-type meta-edges to interval-type edges in EG.

4. ν bijectively maps closed circle-type meta-edges to closed circle-type edges in EG.

Let K (G) =
⋃

Kn(G) represent the class of spatial graph shadows for G.
A spatial graph diagram for G is a spatial graph shadow together with a mapping C → S

of crossing signs. As usual, we will primarily consider S = {+,−}. Let K(G) =
⋃Kn(G)

represent the class of spatial graph diagrams for G.
Spatial graph shadows and diagrams are rooted if additionally they have a marked root

arc. As in previous cases, all diagrams will be rooted unless otherwise noted.
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Figure 6.2: Additional Reidemeister moves for spatial graph diagrams.

If in addition to the classical Reidemeister moves we consider the three additional moves
in Figure 6.2, then there is a one-to-one correspondence between ambient isotopy classes of
embeddings of a graph G and equivalence classes of spatial graph diagrams for G.

Just as our knot shadows are dual to a subclass of quadrangulations of the sphere, for
a fixed graph G, the class K (G) is dual to a subclass of quadrangulations with marked
boundary [12]. Similarly, there is a bijection for quadrangulations with marked boundary.
Using this bijection, one could write software to sample quadrangulations with prescribed
boundaries and, using rejection, uniformly sample spatial graph shadows for G. Another
approach to sampling spatial graph shadows would be to use an extension of the Markov
chain Monte Carlo approach outlined in Chapter 9 which includes transitions (appropriately
weighted) corresponding to flat versions of the spatial graph Reidemeister moves in Figure 6.2.

For a vertex v in a graph, we denote by deg(v) the degree of v; the number of edges which
connect to v. Similarly, for a vertex or crossing x in a shadow or diagram, we denote by
deg(x) the degree of x; the number of arcs connected to x. For a graph G = (EG, VG) with
total vertex degree d =

∑
v∈VG deg(v), an spatial graph shadow or diagram with n crossings

has precisely d+ 4n arcs and hence at most (d+ 4n)/2 edges.

6.2 Pattern theorems for spatial graph diagrams

We can now leverage the machinery of Chapter 4 to gain insight on the asymptotic behavior
of knotted spatial graphs. First, we have that:

Proposition 6.1. Let G be a graph. For a prime tangle diagram Q of one open strand, edge
replacement is a viable attachment into K(G).

Proof. The proof is nearly identical to that for Proposition 4.1. In the proof of property (1),
notice that there must be at least n edges in an n-crossing spatial graph diagram for G. In
the proof of property (2), notice that edge replacement of Q fixes the meta-edges R of any
diagram D ∈ K(G).
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With this in hand, we are able to prove a weak pattern theorem for spatial graph diagrams
for a graph G:

Corollary 6.2. Let G be a graph and let Q be a prime tangle diagram of one open strand. Let
M(x) be the generating function by the number of edges for K(G). Let H(x) be the generating
function by the number of edges for those diagrams D in K(G) that contain less than ce(D)
pairwise disjoint copies of Q; call this class H . Suppose there is a viable attachment for Q
into H . If 0 < c < 1 is sufficiently small, then r(M) < r(H). The diagrams may be rooted
or not.

Proof. This follows immediately from Theorem 4.3 and Proposition 6.1.

For generic graphs G, we are unable to prove any smooth growth results. It is simple to
prove in all cases that their growth is bounded by below:

Proposition 6.3. Let G be a graph and let kn(G) be the count of n-crossing shadows in
K (G). Then

µ = lim
n→∞

k1/n
n ≤ lim inf

n→∞
kn(G)1/n.

Proof. Let D = (A,E, V ∪ C) ∈ KM(G) be a fixed spatial graph shadow for G with M
crossings. For every knot shadow S ∈ K of m crossings, edge replacement of S into the root
edge of D produces a new, unique rooted spatial graph shadow D′ for G with n = m+M
crossings and one marked edge. The number of edges in D′ is bounded, loosely, by `n, where
` = maxv∈(V ∪C) deg(v) <∞. Hence,

1

`n
kn−M ≤ kn(G).

As ` remains constant while n dominates, passing to the n-th root and large n limit inferior
yields the result.

We do conjecture that smooth growth properties hold;

Conjecture 6.4 (Smooth growth for spatial graph shadows). Weak: Let G be a fixed graph,
and let kn(G) be the count of n-crossing diagrams in K (G). Then the limit

lim
n→∞

kn(G)1/n

exists.
Strong: Furthermore,

lim
n→∞

kn(G)1/n = µ.

For any graph G for which the weak version of conjecture can be proven, the strong
pattern theorem result follows immediately:
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Corollary 6.5. Let G be a fixed graph. Suppose that for the class K(G) and the tangle Q all
of the hypotheses of Theorem 6.2 apply. Additionally suppose that K(G) grows smoothly, i.e.
that, the above conjecture holds.

Then there exist constants c > 0, d < 1 and N > 0 so that for all n ≥ N , we have that
the number of diagrams κn(G) and the number hn of such diagrams which contain fewer than
cn copies of the tangle Q obey;

hn
κn(G)

< dn.

Hence for any such graph, almost all spatial graph diagrams are knotted, just as in the
case of knots and links proper.

6.3 Smooth growth for spatial graph diagrams

There are some graphs G whose classes of shadows grow smoothly (after which the results
for diagrams immediately follow). The graph G = S1 grows smoothly as

lim
n→∞

kn(S1)1/n = lim
n→∞

k1/n
n = µ.

We can extend this result to a number of different graphs.

Proposition 6.6. Let G =
⋃k S1 be a fixed disjoint union of k ≥ 1 circles S1, and let kn(G)

be the count of n-crossing shadows in K (G). Then the limit

lim
n→∞

kn(G)1/n

exists and is equal to µ = limn→∞ k
1/n
n . That is, the class of link shadows with a fixed number

k of link components grows smoothly at the same exponential rate as knot shadows.

Proof. We proceed by induction. Certainly if k = 1 the result is true as kn(G) is simply the
number of n-crossing knot shadows.

Suppose now that forG′ =
⋃k S1 we know that limn→∞ kn(G′)1/n = µ and letG =

⋃k+1 S1.
As every shadow D in Kn(G) is connected and planar, there exists at least two crossings in
D (at least one of which is not the root crossing) at which two different link components
of D cross. At any one of those crossings, a smoothing as in Figure 6.3 produces a unique
shadow in the class of shadows in Kn−1(G′) with two marked arcs.

Hence,
kn(G) ≤ (4n)2kn−1(G′).

Passing to n-th roots and the large n limit together with Proposition 6.3 yields,

µ ≤ lim
n→∞

kn(G)1/n ≤ lim
n→∞

kn(G′)1/n = µ,

proving the claim.

With this result in hand, we can do even better;

Proposition 6.7. Let G = (V,E) be a graph such that
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D D

Figure 6.3: Smoothing a crossing at which two different components meet produces a new
shadow with one fewer circle components.

1. all edges in E are either circular link components or edges connecting two vertices in
V , and

2. all vertices in V have even degree.

Let kn(G) be the count of n-crossing shadows in K (G). Then the limit

lim
n→∞

kn(G)1/n

exists and is equal to µ = limn→∞ k
1/n
n .

Proof. Once more we proceed by induction, this time on the number of vertices in G, |V |.
The base case—a graph with no vertices and only circular link components—is covered by
Proposition 6.6.

Suppose now that for graphs with k − 1 ≥ 0 vertices all of even degree, the result holds.
Consider a graph G with k vertices. Fix a vertex νk of degree d in G and let D ∈ Kn(G) be
an spatial graph shadow for G with n crossings. Let vk be the preimage non-crossing vertex
of νk in D. Either smoothing the vertex (if d = 2), changing the vertex into a crossing (if
d = 4), or opening up the vertex (if d ≥ 6) vk into d/2 marked crossings as in Figure 6.4
produces, for some G′ with k − 1 vertices all of even degree (and no interval edges) a new
shadow in Kn+d/2(G

′). Furthermore, there are at most (d− 1)!! choices of graph G′ which
can be produced from G by opening the vertex ν(vk).

Hence,
kn(G) ≤ (d− 1)!! max

G′
{kn+d/2(G′)},

and passing to n-th roots and the large n limit together with Proposition 6.3 yields,

µ ≤ lim
n→∞

kn(G)1/n ≤ max
G′

lim
n→∞

kn(G′)1/n,

whence the inductive hypothesis yields that

µ ≤ lim
n→∞

kn(G)1/n ≤ µ,

proving the claim.
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Figure 6.4: Opening up a vertex of degree 2d into a d-gon.

If graphs G have either loose edges or vertices of odd degree, the issue becomes more
complicated. This is a result of the unknown value of the growth rate of the graph G consisting
of only an interval edge:

Proposition 6.8. Let G = I be the graph with no vertices and only an edge of interval type.
Then

lim
n→∞

kn(G)

exists and is equal to µI ≥ µ.

Proof. Notice that any diagram for G has no non-crossing vertices and two loose arcs which
do not belong to any edge. If D1 = (A1, E1, C1), D2 = (V2, E2, C2) are two diagrams for G of
n1 and n2 crossings respectively, then the following composition produces a new diagram for
G with precisely n1 + n2 crossings and one additional marked arc:

Let a1 and a2 be loose arcs of D1 and D2 respectively chosen deterministically by using
the root arcs r1 and r2. Then the diagram D = (V1∪V2, E1∪E2∪{(a1a2), C1∪C2}) with root
arc r1 and additional marked arc r2 has n1 +n2 crossings and is a diagram for G. Furthermore,
knowledge of n1 and n2 together with the additional marked arc provides an inverse mapping
on diagrams produced this way. An example of this is given in Figure 6.5.

As there are 4n arcs in an n-crossing interval diagram,

kn1(G)kn2(G) ≤ (4n)kn1+n2(G).

Since kN exhibits exponential growth by Proposition 6.3, we are guaranteed that there exists
some fixed M for which

kn1(G)kn2(G) ≤ (4n)kn1+n2(G) ≤ kn1+n2+M(G).

Hence by Wilker-Whittington’s theorem [110] (we still have the trivial bound on of kn(G)1/n

of 144), the limit
lim
n→∞

kn(G)1/n

exists, and we call its value µI . By Proposition 6.3, we know µ ≤ µI .
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D1 D2 D1
D2× =

Figure 6.5: A reversible composition operation for interval diagrams.

The value of µI is unknown, but based on similar models we conjecture,

Conjecture 6.9. The exponential growth rates µ and µI are equivalent.

Regardless, this growth rate µI is a lower bound for the growth rates of spatial graph
diagrams of some graph types which do not satisfy the hypotheses for Proposition 6.7

Proposition 6.10. If G has either a vertex of degree 1, a loose edge, or an interval edge,
then

µI ≤ lim inf
n→∞

kn(G)1/n.

Proof. Let D = (A,E, V ∪ C) ∈ KM(G) be a fixed spatial graph shadow for G with M
crossings. Suppose first that G has at least one loose arc a. Let I be the graph consisting only
of one interval edge. For every interval shadow S = (AI , EI , CI) ∈ K (I) of m crossings with
root arc r and determined loose arc b, the diagram D′ = (A∪AI , E ∪EI ∪{(ab)}, V ∪C ∪CI)
with marked arc r and marked edge (ab) as depicted in Figure 6.6 is an element of Km+M (G).
Given the marked edge, this procedure is reversible, so this composition induces an injective
map.

If instead G has a vertex v of degree 1, then we define a similar composition. Then D
contains the non-crossing vertex (z), where the arc z is contained in an edge (az). For every
interval shadow S = (AI , EI , CI) ∈ K (I) of m crossings with root arc r, and a determined
ordered pair of loose arcs (b, y), the diagram D′ = (A∪AI , E ∪EI ∪ {(ab), (yz)}, V ∪C ∪CI)
with marked arc r and marked edge (ab) is an element of Km+M (G). Given the marked edge,
this procedure is reversible, so this composition induces an injective map. Intuitively, this
operation only differs from the above in that we keep track of the “cap” vertex.

Let n = m + M . Independent of above scenario, The numbers of arcs and edges in D′

both bounded, loosely, by `n, where ` = maxv∈(V ∪C) deg(v) <∞. Hence,

1

(`n)2
kn−M ≤ kn(G).

As ` remains constant while n dominates, passing to the n-th root and large n limit inferior
yields the result.
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× =

Figure 6.6: Attachment of an interval shadow into a diagram with a loose arc.
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Chapter 7

Open Knots, Knotoids, and Fixed Knot Types

Any open strand is topologically equivalent to the straight interval (the so-called “light-bulb”
theorem). So, knotting in an open strand is a result of its geometry. Identifying knots in open
strands is important in physics and biology: Long chain polymers, such as proteins and DNA
are often modeled as open strands. Moreover “knotting” in polymers has been shown to affect
their behavior and effectiveness: Enzymes, for example, may not function with their usual
efficacy (or at all!) if they are not an appropriately knotted contortion of their protein [85,
98]. Knotting and slipknotting in space curves is summarized in [76].

7.1 Open diagrams

An open diagram D = (A,E,C) is a spatial diagram for the graph G consisting of precisely
one interval edge and any number of circular edges. For an open diagram, cycles of C2 ◦ E
enumerate all of the closed components of the diagram with either orientation, and there
is one cycle corresponding to the open component traversed first forwards, then backwards.
The condition that an open diagram is planar is now that C ◦ E has precisely n+ 1 cycles;
an open diagram is an open knot diagram if C2 ◦ E has precisely one cycle. An example of
an open knot diagram is given in Figure 7.1. Let SK be the class of open knot shadows
sized by crossings with counts skn, and let SK be the class of open knot diagrams sized by
crossings with counts sκn.

01

2
3

4

5

6
7

Figure 7.1: The open diagram defined by C = (−0123)(−4567), E = (07)(15)(34). This
diagram has knot type 1

2
31 + 1

2
01 under our definition. Arc labels are drawn inside of their

face, i.e. their parent cycle in C ◦ E = (04)(167)(235).
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b
e

a
a b

Figure 7.2: A diagram D and its open version cut at e, D \ e. Either diagram has 31 as its
respective knot type.

a

b

a′

b

Figure 7.3: An open diagram D and its contraction along arc a, D − a. The diagram D has
knot type [D] = 1

2
41 + 1

2
01, while the knot type of the contraction is [D − a] = 01.

In parallel with Turaev’s study of knotoids [104], we could call such diagrams knotoid
diagrams. However, we plan to allow more generic definitions of open knot types than Turaev’s
knotoid type definition, and will instead use the term “open knot diagram” to distinguish
this flexibility in choice of type. Let D be a diagram, and e = (ab) an edge in D connecting
arcs a and b. Then D \ e is the 2-tangle diagram given by (A,E \ {e}, C). Pictorially, D \ e
looks like D except with the edge e “cut” so that the arcs a and b are the loose arcs of the
tangle, as in Figure 7.2.

Definition 7.1. Let S be an open diagram of at least one crossing and a, z its loose arcs.
Say that a is connected to a crossing v joining arcs a, b1, c1, d1, oriented counterclockwise
(namely, arc c1 meets the crossing opposite a). Say that the latter three arcs are part of edges
eb = (b1b2), ec = (c1c2), and ed = (d1d2).

Then the contraction S − a of S by arc a is the new open diagram produced by deleting
crossing v, edges eb, ec, ed, and arcs a, b1, c1, d1 and inserting the edge e = (b2d2) joining arcs
b2 and d2. S − a is a new open diagram with one fewer crossing, two fewer edges, and loose
arcs c2 and z. An example of the contraction operation can be seen in Figure 7.3.
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(a) The knot diagram D. (b) A subdiagram S of D.

Figure 7.4: A minimal knot diagram D for 11a135 contains S as a subdiagram. As seen in
Figure 7.5, the knot type of S is [S] = 1

2
41 + 1

2
01.

If S has precisely one crossing, then its contraction (by either arc) is the “trivial” open
diagram.

If T is an open diagram with no more crossings than S, then say S contains T as a
subdiagram, T ≤ S, if S = T or there exists a series of contraction operations on S that
produces the open diagram T . If D is a closed diagram with as many or more crossings than
T , then say D contains T (T ≤ D) as an open diagram if there exists an edge e in D so that
D \ e contains T . An example of a diagram and a subdiagram is given in Figure 7.4.

This is just one example of a contraction operation. Provided a different contraction
operation behaves similarly enough, one can obtain the same results on subknotting presented
here.

7.2 Subknots and slipknots

For open knots in space, knot type is defined as a probability distribution of knot types of
actual knots obtained by closing the open knot in all ways dictated by some choice of closure
scheme.

An advantage of working with open diagrams as opposed to open knots in space is that
there exists a designated normal direction to the thickened plane in which the diagram resides.
This suggests the following reasonable definition of the knot type of an open diagram:

Definition 7.2. Consider an open diagram S with loose arcs a, z. Then there exists a
knot type [So] represented by any of the diagrams produced by adding a generic non-self
intersecting curve connecting a to z and passing over every edge of S; the knot type [So]
does not depend on the choice of closing curve by Reidemeister moves (indeed, if the open
knot diagram represents an interval who lives entirely in a thickened sphere inside S3, then
these closing arcs can be made to exist entirely outside the sphere). Similarly, there is a knot
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(a) An over closure of S, with knot type 41 (b) An under closure of S, with knot type 01

Figure 7.5: Closures of the open diagram S from Figure 7.4b: So and Su.

type [Su] represented by diagrams similarly closed with a curve connecting a to z but passing
under every edge in S1. Examples of these closures are given in Figure 7.5. The knot type of
an open diagram S is the normalized probability sum of knot types 1

2
[So] + 1

2
[Su] called the

knotting spectrum. An open diagram whose knotting spectrum is 01 is unknotted, or trivial.
A diagram D strongly contains a knot type [K] as a subknot if there exists an open

diagram S contained in D whose knot type is precisely [S] = [K]. Say the diagram D weakly
contains a knot type [K] if there exists an open diagram S contained in D whose knot type
is [S] = 1

2
[K] + 1

2
[L], where [L] is an arbitrary knot type.

If a diagram D strongly contains [K] then it weakly contains it as well; the converse is
not necessarily true. We will talk about diagrams containing knot types without specification
of strength; the results in this paper do not depend on one or the other.

Importantly, this definition satisfies analogous characteristics to the MDS method [78, 76]
of identifying subknots in open space polygons:

• The knot type of an open diagram does not change under small perturbations. Open
knot diagrams are discrete objects and hence there are no perturbations; this property
is hence satisfied vacuously.

• The knot type of an open diagram which is “almost closed” is the same as that of the
“obvious closure”. As the knot type of D \ e is precisely the same as the knot type of D,
for any edge e in D, this property is satisfied.

Millett [75] has a definition of knot type for subdiagrams of knot diagrams which is
equivalent to our definition of the knot type of the over closure. Indeed, this is as any
ascending (possibly self-intersecting) over-closure path will produce a closed diagram with
the same knot type, c.f. Figure 7.6.

1Turaev [104] calls these S+ and S− respectively.
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Figure 7.6: The ascending closure of the subdiagram S inside of D in Figure 7.4.

This definition of knot type behaves well under contraction; if S is an open diagram of
type 1

2
[K1] + 1

2
[K2] and a is a loose arc of S, then there exists a knot type [X] (it may be

[K1], [K2], or neither) so that [S − a] is either 1
2
[K1] + 1

2
[X] or 1

2
[X] + 1

2
[K2].

Although it is not true that any two open knot diagrams with the same open knot type
are necessarily related by Reidemeister moves, open knot type is at least invariant under
them. That is:

Theorem 7.1. Open knot type is invariant under the usual Reidemeister moves (i.e. those
which do not interact with the loose ends).

Proof. Let D and D′ be two open diagrams which are related by a single Reidemeister move,
φ. As the knot type [Do] is independent of choice of over-closure, we may choose Do to be an
over-closure which does not intersect the region to which the Reidemeister move φ applies
on D. Hence φ lifts to a Reidemeister move on Do, producing φ(Do) = D′o, a closure of
D′. Hence [Do] = [D′o] as (usual) knot type is Reidemeister invariant. This extends to both
under-closures and arbitrary sequences of Reidemeister moves, proving the claim.

Indeed, this was just one choice of definition of the knot type for open diagrams. Just
as in the case of space polygons, one can construct other definitions that satisfy the same
conditions as the MDS method. The results that follow do not depend on the definition
chosen. For instance, they all follow if we take Turaev’s choice [S−] of knotoid type (resp.
[S+]).

In a loose physical sense, a slipknot “appears” in a piece of string if, as the string is pulled
taut, the slipknot unties itself. We can define this concept for diagrams.

Definition 7.3. Let [K] be a knot type and D a diagram (open or closed). If D contains
the knot type [K] as a subknot but [K] does not appear as a knot type in [D], then D
contains [K] as a slipknot. The open diagram S ≤ D which represents the knot type [K] is
an ephemeral knot.

This definition is the analogue of that in [76] in the case of diagrams.
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R R
−→

Figure 7.7: Isthmi can be removed while preserving knot type with this composite move.

7.3 Pattern theorems for slipknots

With this machinery, we can prove a variety of theorems for slipknotting in different classes
of diagrams.

7.3.1 Slipknots in knot diagrams

For the cases of link diagrams and knot diagrams, we have shown in Chapter 4 that there
exist pattern theorems similar to those of Kesten for self avoiding lattice walks. We first show
that we can construct tangles that insert slipknots into diagrams while preserving closure
within these classes;

Lemma 7.2. Let [K] be a knot type. Then there exists a reduced 2-tangle diagram T whose
insertion into a knot diagram by edge replacement produces a new diagram which contains
[K] as a slipknot.

Proof. By a Lemma of Millett [76], there exists an open self-avoiding walk γ whose inclusion
in self-avoiding polygons guarantees that they include a slipknot of type [K]. Let T be an
open diagram produced by projecting γ to a sphere, so that both of its external legs lie in
the same face. The diagram T can then be reduced by a sequence of composite Reidemeister
I type moves given in Figure 7.7.

By construction of T and parallels of our definition of slipknotting with Millett’s, inclusion
of T as a subtangle in a diagram requires that [K] be contained as a slipknot.

With this then we can see,

Theorem 7.3. Let [K] be any knot type, and C either the class of link diagrams or knot
diagrams. Then there exists c > 0, 1 > d > 0 and N ≥ 0 so that for all n ≥ N

P(D a diagram of n crossings contains ≤ cn copies of [K] as a subknot) < dn,

so that the probability that a random diagram in C contains the knot type [K] as a subknot
goes to one as the complexity of the diagram (i.e. the number of crossings) goes to infinity.

Proof. The result is a direct consequence of the pattern theorem, provided the construction for
the appropriate tangle. We provide an example (Figure 7.8) for “edge replacement” (connect
summation) which shows that trefoil slipknots are common in general and reduced diagrams.
Others are guaranteed by Lemma 7.2.
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Figure 7.8: A tangle T which shows that trefoil slipknots are common in link diagrams and
knot diagrams.

7.3.2 Slipknots in unknot diagrams

As we are considering slipknotting rather than knotting proper, we are able instead to consider
classes of diagrams with fixed knot type [K]! Consider the class of knot diagrams representing
the unknot. Indeed, any tangle T whose inclusion in a diagram D would be sufficient to
show that D would be knotted would be immediately excluded from a pattern theorem for
unknot diagrams! Tangles which insert slipknots but do not introduce any new knot type
factors however, namely those constructed in Theorem 7.3, may indeed be admissible. Hence,
we can show,

Theorem 7.4. Let [K] be any knot type, and K(01) the class of unknot diagrams. Then there
exists c > 0, 1 > d > 0 and N ≥ 0 so that for all n ≥ N

P(D a diagram of n crossings contains ≤ cn copies of [K] as a subknot) < dn,

so that the probability that a random diagram in K(01) contains the knot type [K] as a subknot
goes to one as the complexity of the diagram (i.e. the number of crossings) goes to infinity.

Proof. Once we show the pattern theorem for the class of unknot diagrams, we would have
the result by the proof of Theorem 7.3.

Notice that this theorem answers Conjectures 2.12 and 2.19 from [76] in the affirmative
for random unknot diagrams, and highlights an important property of the diagram model;
attachments of patterns can be strongly local (e.g. connect summation of a 2-tangle to an
edge doesn’t affect any other edges in a diagram). The expected attachment operations
mentioned in the proof of Theorem 7.3 above can be seen easily to be viable for unknots
(provided tangles whose insertion does not change the knot type of a diagram). Hence all
that is required to prove a pattern theorem for unknot diagrams is;

Proposition 7.5. Let K(01) be the class of unknot diagrams, and let κn(01) be the count of
n-crossing diagrams in K(01). Then the limit

lim
n→∞

κn(01)1/n
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exists and is equal to τ0 <∞.

Proof. The proof is similar to those in prior chapters. The composition construction of
shadows extends naturally to diagrams and only produces diagrams whose knot type is the
connect sum of its components’ knot types ; hence unknot diagrams only compose into unknot
diagrams. This provides the super-multiplicativity hypothesis that κn(01)κm(01) ≤ κn+m(01),
and proves the claim.

7.3.3 Slipknots in other fixed knot types

In fact, it is this observation which shows why the proof strategy does not immediately apply
in general to classes K([K]) of diagrams of some other, nontrivial knot type [K]. Indeed,
to apply the theorems one would have to provide a composition that fixes knot type. This
trouble mirrors other models of random knots, in particular self-avoiding polygons: The
growth rates of all self avoiding polygons and those which represent the unknot are known to
exist. However the following is yet unknown; for any fixed knot type [K], is the growth rate
of polygons representing [K] is equal to that of the unknot? Such results have been shown
by restricting to very specific subclasses of self avoiding polygons, but are not known in the
general case.

We do have a weak result for such classes:

Theorem 7.6. Let [L] and [K] be any two knot types, and K([L]) the class of diagrams of
knot type [L]. Then there exists c > 0 so that the following holds: Let Hn be the subclass of
diagrams in Kn([L]) who contain fewer than cn copies of [K] as a subknot. Then

lim sup
n→∞

|Hn| < lim sup
n→∞

κn([L]).

Proof. The argument here is the same as that for unknot diagrams above: Tangle diagrams
which insert slipknots of type [K] can be freely inserted without changing the knot type of a
diagram. We are left with the weak result because we do not know enough about the growth
rate of the class of diagrams K([L]).

We do conjecture that:

Conjecture 7.7. Let [L] be a fixed knot type and K([L]) the class of diagrams of fixed knot
type [L], and let κn([L]) be the count of n-crossing diagrams in K([L]). Then the limit

lim
n→∞

κn([L])1/n

exists.

If the above were true, then we would get the “strong” pattern theorem result:

Proposition 7.8. Let [L] and [K] be any two knot types, and K([L]) the class of either
general, prime, or reduced diagrams of knot type [L]. Furthermore, suppose that Conjecture 7.7
is true. Then there exists c > 0, 1 > d > 0, and N ≥ 0 so that for all n ≥ N ,

P(D a diagram of n crossings contains ≤ cn copies of [K] as a subknot) < dn,
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so that the probability that a random diagram in K([L]) contains the knot type [K] as a
subknot goes to one as the complexity of the diagram (i.e. the number of crossings) goes to
infinity.

Indeed, the belief is that not only do the limits

lim
n→∞

κn([L])1/n

exist, but that for any two knot types [K], [L], the limits are the same, i.e.,

lim
n→∞

κn([K])1/n = lim
n→∞

κn([L])1/n.

This is the belief for other models of random models of knotting, namely self avoiding
polygons [88], where there is extensive numerical evidence.

7.3.4 Slipknots in classes with fixed unknotting number

Rather than partitioning diagrams along “knot invariant” lines (such as knot type) as we did
in the prior sections, we can partition along “diagram invariant” lines. One such example is
the unknotting number of a diagram D, which is the minimum number Unk(D) of crossings
of a fixed diagram that need to be toggled in order to change a given diagram to the unknot.
This is related to the usual definition of the unknotting number of a knot type [K] by,

Unk([K]) = min
D

Unk(D),

where the minimum is over all diagrams D which represent the knot type [K].
The unknotting number is biologically relevant; Topoisomerase enzymes are tasked with

untangling DNA in cells [18]. Topoisomerase works locally on DNA molecules by passing
an “upper” strand of DNA through another; diagrammatically this process is identical to a
crossing toggle. Hence in this context, crossing toggles are called strand passages, and the
unknotting number of a knot type is its distance from 01 under the strand passage metric [32,
96].

Theorem 7.9. Let cn(`) be the count of n-crossing knot diagrams with unknotting number `.
Then limn→∞ (cn(`))1/n = τ0, the growth constant of counts of unknot diagrams.

Proof. Let Cn(`) denote the set of rooted knot diagrams with unknotting number precisely `.
Define subsets C +

n (`) and C −n (`) to be those diagrams with the property that toggling the
root vertex (i.e. the vertex which the root points to) increases or decreases the unknotting
number of the diagram, respectively. Observe from the bijection where one toggles the root
vertex that C +

n (`) ∼= C −n (`− 1).
Let cn(`), c+

n (`), and c−n (`) be the sizes of the sets Cn(`),C +
n (`), and C −n (`) respectively.

Consider ` > 0. A toggle of any crossing in a diagram in Cn(`) will either increase, decrease,
or fix the unknotting number. As ` > 0, there must be at least one crossing whose toggling
decreases the unknotting number (this is the definition). Hence |cn(`)| ≤ n|c−n (`)|. Then,

1

n
|cn(`)| ≤ |c−n (`)| ≤ |cn(`)|,
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where the latter inequality comes from that one is the subset of the other. This implies then
that

lim
n→∞

(c−n )1/n = lim
n→∞

(cn)1/n.

Let D be a rooted standard diagram representation of the (2, 2` + 1) torus knot. It is
known that D has unknotting number `. So there is an injection from Cn(0) ↪→ Cn+(2`+1)(`)
given by connect-summing D to each rooted unknot in Cn(0). This implies then that

τ0 = lim
n→∞

(cn(0))1/n ≤ lim
n→∞

(cn+(2`+1)(`))
1/n = lim

n→∞
(cn(`))1/n

The theorem then follows by an induction argument. For ` = 0 we have that |Cn(0)| is
simply the set of rooted unknot diagrams with n crossings and the growth rate of this class
is τ0 by definition.

On the other hand, suppose that for some ` ≥ 0, limn→∞(cn(`))1/n = τ0. So,

τ0 = lim
n→∞

(cn(`))1/n ≥ lim
n→∞

(c+
n (`))1/n = lim

n→∞
(c−n (`+ 1))1/n = lim

n→∞
(cn(`+ 1))1/n ≥ τ0,

where the final inequality was explained above. Hence τ0 = limn→∞ (cn(`+ 1))1/n as desired,
completing the proof of the theorem.

Unknotting number of diagrams satisfies the following relation under connect summation
of two diagrams A,B:

Unk(A#B) = Unk(A) + Unk(B).

This implies that connect summation of an unknotted 2-tangle to a diagram with unknotting
number ` produces a resultant diagram which is also unknotting number `. This means that
if P is an unknotted tangle which is admissible for attachment into diagrams in C , it is also
admissible for attachment into diagrams C (`). This then implies;

Theorem 7.10. Let [K] be any knot type, and C (`) the class of knot diagrams with unknotting
number `. Then there exists c > 0, 1 > d > 0, and N ≥ 0 so that for all n ≥ N

P(D a diagram of n crossings contains ≤ cn copies of [K] as a subknot) < dn,

so that the probability that a random diagram in C (`) contains the knot type [K] as a subknot
goes to one as the complexity of the diagram (i.e. the number of crossings) goes to infinity.

Proof. The argument is the same as in the proof of Theorem 7.4. Connect sum is a viable
attachment scheme as connect summation of an unknot diagram cannot reduce the unknotting
number.

7.4 Asymptotics of open knot diagrams

In Chapter 3, we discuss that the asymptotic counts of knot diagrams are directly related to the
asymptotic counts of plane curves, and hence are conjectured by Schaeffer and Zinn-Justin [95]
to be

κn
2n

= kn ∼
n→∞

cµn · nγ−2.

We have defined open knot diagrams as decorated open plane curves whose endpoints need
not lie in the same face (i.e. open knot shadows). We conjecture:
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Conjecture 7.11. The asymptotic growth of open knot diagrams is in fact

sκn
2n

= skn ∼
n→∞

c′µn · nγ′−2,

for some constant γ′.

It is in fact still unknown whether limn→∞ sk
1/n
n = µ; this is Conjecture 6.9. This is

different from the case of self-avoiding walks and self-avoiding polygons, whose growth rates
are equal as a fundamental result of Hammersley [51]. Below we present evidence for the
conjecture.

7.4.1 Conformal Field Theory

We will reason out the conjecture using a conformal field theory argument similar to that for
meanders of [47]. Zinn-Justin and Zuber have proposed the following matrix integral [113] for
the study of knot diagrams:

Z(N, τ ;x) =

∫ τ∏

a=1

dMa exp

(
−N

2
Tr

(
τ∑

a=1

M2
a −

x

2

τ∑

a,b=1

(MaMb)
2

))
,

where the integral is over all N ×N Hermitian matrices, τ is the number of colors with which
loops are marked, and x is a formal variable. What is important is that the formal series

F (x) = lim
τ→0

lim
N→∞

logZ(N, τ ;x)

N2

is the generating function which counts all knot shadows,
∑

n x
nkn. Applying the ideas of Di

Francesco, et al., one defines the operator

ϕ1 = lim
N→∞

1

N
Tr

τ∑

a=1

Ma,

which adds a single vertex of degree 1. Hence the limit of the expectation limτ→0
1
τ
〈ϕ1ϕ1〉

should be a generating series for the open knot shadows. One should then, after calculating
the conformal dimension of ϕ1 and using the KPZ [66, 40] formula which relates flat and
random geometry, be able to conjecture precisely the the critical exponent of γ′.

This argument is non-rigorous, and any results would depend on the validity of the
mathematical physical interpretation. We thus consider different reasoning, which only uses
combinatorics.

7.4.2 Mean geodesic distance

There is another argument that the growth rates are equivalent which involves the geodesic
distance of an open knot diagram:

Definition 7.4. The geodesic distance d(L) of an open knot diagram L is the minimum
number of edges that any path in the surface of the diagram connecting the two legs crosses.
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Figure 7.9: A minimal open knot shadow with geodesic distance 3 (left) has 6 crossings. A
minimal open link shadow with geodesic distance 3 (right) only has 3.

This is a concept discussed for more general maps in [15]. One of their conclusions is
that the average geodesic distance between the two open legs in the case of all open link
shadows is the same as the average distance between any two faces in a closed link shadow,
asymptotically proportional to n1/4. It is believed that the average geodesic distance for knot
shadows is the same or smaller, as it is “more difficult” for open knot shadows to have large
geodesic distance. For instance, Figure 7.9 compares the smallest open knot shadow with
geodesic distance 3 to the smallest open link shadow with the same geodesic distance.

Preliminary data suggests this conjecture. An alternate closure method for blossom trees
of Bouttier, et al [15] is in bijection with open link shadows. Introducing this algorithm into
Gilles Schaeffer’s PlanarMap [94] software we were able to gather data to test this conjecture.
Figure 7.10 shows curves for the mean geodesic distance of open link diagrams and open knot
diagrams.

If we assume this, notice that a result on the growth rates follows:

Theorem 7.12. Let f(n) denote the average geodesic distance of open knot shadows in SKn.
Suppose that limn→∞ f(n)/n = 0. Then the growth rate of open knot shadows is,

lim
n→∞

sk1/n
n = lim

n→∞
k1/n
n = µ

Proof. Partition the numbers skn of open knot shadows with n crossings by geodesic distance:
Let skn[`] be the number of n-crossing open knot shadows of geodesic distance `, so that
skn =

∑n
`=0 skn[`] (n is an upper bound on geodesic distance; 2n is even more trivial [it is

the number of edges], and would equally suffice).
First notice that kn ≤ skn and hence µ ≤ µI by splitting the root edge of knot shadows

counted by kn. Notice furthermore that skn[`] ≤ kn+` as we can deterministically close any
distance ` open knot shadow by introducing ` new crossings (and this map is inverted on its
image by contracting ` crossings back from the root).

Define skn[> `] =
∑n

j=b`c+1 skn[j] and skn[≤ `] =
∑b`c

j=0 skn[j]. For a nonnegative function

g(n) obeying limn→∞ g(n)/n = 0, let

m = argmax`≤dg(n)e{skn[`]}
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Figure 7.10: The mean geodesic distance of knot shadows appears to grow at the same rate
as for link diagrams.

so that dg(n)eskn[m] ≥ skn[≤ g(n)] (observe that trivially dg(n)e ≥ m).
First, suppose we have some constant α for which, independently of n, we can partition

skn = skn[≤ g(n)] + skn[> g(n)] with αskn ≤ skn[≤ g(n)]. Say g(n) is a pivot for α. Then
skn ≤ α−1skn[≤ g(n)] and furthermore,

kn ≤ skn ≤ α−1skn[≤ g(n)] ≤ α−1dg(n)eskn[m] ≤ α−1dg(n)ekn+m ≤ α−1(g(n) + 1)kn+dg(n)e

So,

ln(µ) ≤ ln(µI) ≤ lim sup
n→∞

− ln(α) + ln(g(n) + 1) + ln(kn+dg(n)e)

n

= lim sup
n→∞

ln(kn+dg(n)e)

n

=

(
lim sup
n→∞

ln(kn+dg(n)e)

n+ dg(n)e

)(
lim sup
n→∞

n+ dg(n)e
n

)

≤ ln(µ),

provided the condition on g(n) established prior.
Let g(n) ≥ 2f(n); then g(n) obeys limn→∞ g(n)/n = 0, by the assumption on f(n). By

Markov’s inequality [44], we have that skn[≤ g(n)] ≥ (f(n)/g(n))skn = skn/2. Hence g(n) is
a pivot for α = 1/2. This then shows that the growth rate result follows.

Of course, this is dependent on proving such a bound on the mean geodesic distance of
knot shadows!
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(a) A knot diagram of knot type 41#31.
(b) Disk matrix of subknots in the dia-
gram in 7.11a. Light blue is 41#31,
orange is 41, and dark blue is 31. Mixed
knot types are gray and unknots are
white.

Figure 7.11: Visualization of subknots inside of a diagram for 41#31.

7.5 Visualization

We can produce graphics (Figures 7.11b and 7.12b) describing the appearances of subknots
and slipknots inside of knot diagrams similar to those of [85, 98]. In these disk matrices , the
(normalized) radius represents the fraction of the diagram used as the subdiagram; the outer
circle hence describes the knot type of the whole diagram. The angle corresponds to the edge
index, ordered around the knot diagram with an orientation, from which the diagram is split
and contracted.

These graphics are produced in the same manner as Rawdon’s [85] figures for space
polygons. It is encouraging how similar these figures are. Namely, observe how slipknots
represent as tendrils starting near the outer rim and slowly winding towards the center before
disappearing.
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(a) The standard knot diagram for the
torus knot 51.

(b) Disk matrix of subknots in the dia-
gram in 7.12a. Blue is 51, orange is
41, and light green is 31. Mixed knot
types are gray and unknots are white.
Cf. figure 2b in [85].

Figure 7.12: Visualization of subknots inside of a diagram for 51.
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Chapter 8

Virtual Knots

By relaxing the condition of planarity which we have thus far required, we arrive in the realm
of virtual knot theory . In this chapter, we will explore how the diagram model extends to this
regime.

8.1 Virtual knot theory

If, rather than define knots as embeddings of circles into S3, we had defined knots as
embeddings of circles into the thickened sphere S2 × [0, 1], we would have developed an
equivalent theory. Virtual knot theory [63, 60] is defined by picking a different thickened
orientable surface:

Definition 8.1. A virtual knot is an embedding K : S1 ↪→ Σ × [0, 1], for some orientable
surface Σ. The stabilization of a virtual knot K embedded in the thickened surface Σ is an
equivalent embedding into the thickened surface Σ′ produced by connect summing an empty
thickened handle onto Σ. The reverse operation (removal of an empty thickened handle) is
destabilization.

A virtual knot type is an equivalence class of virtual knots up to 1) ambient isotopy and
2) (de)stabilization. For a virtual knot type [K], the underlying genus [73] is the minimal
genus over all thickened surfaces Σ in which [K] has a representative.

Virtual knot theory is a natural extension of knot theory as two knot types are the same
if and only if they are equivalent as virtual knot types. One wishes to work with diagrams for
virtual knots as well, but this introduces a difficulty: Unlike the case of knot diagrams who
can be drawn on a plane, virtual knots must be drawn on surfaces which may have genus.
One way to solve this problem is by introducing a new crossing type called a virtual crossing:

Definition 8.2. A virtual knot diagram is a knot diagram for which each crossing is either a
usual crossing or a virtual crossing , depicted in Figure 8.1.

Virtual crossings “do not exist”, in the sense that they are an artifact of a projection to
the plane from a surface of genus. This means that the virtual knot type of a virtual knot
diagram is the equivalence class of the diagram under both the classical Reidemeister moves
as well as the virtual Reidemeister moves given in Figure 8.2.

8.2 The virtual knot diagram model

There are two ways by which we can extend the knot diagram model to the virtual theory.
We will first discuss the strategy mentioned in Chapter 3 which is motivated by the definition
of virtual knot diagram above.
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Figure 8.1: The virtual trefoil diagram on the left contains a virtual crossing (right). The
crossing is an artifact of the projection from the torus-embedded diagram to the plane.

↔ ↔

↔ ↔

Figure 8.2: The four virtual Reidemeister moves.
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8.2.1 Virtual knot diagrams with virtual crossings

We extend our definition of knot diagrams as decorated maps in order to describe virtual
diagrams.

Definition 8.3. A virtual knot diagram with virtual crossings is a decorated knot shadow
D with signs in the set S = {+,−, v}, where v denotes a virtual crossing . The class of all
virtual knot diagrams with virtual crossings will be denoted by VK =

⋃
n VKn.

A virtual tangle with virtual crossings is a decorated tangle shadow D with signs in the
set S = {+,−, v}.

Notice that as defined, this model counts virtual crossings just the same as real crossings.
This definition could be tweaked to track actual crossings and virtual crossings separately,
although we will not here. Under this model, the definition of a virtual knot type is clear: A
virtual knot type is an equivalence class of virtual knot diagrams under both the classical
Reidemeister moves and the virtual Reidemeister moves.

With this definition, we immediately have the main result of Chapter 4, which we
reinterpret for the virtual case:

Proposition 8.1. Almost every rooted (general or reduced) virtual knot diagram is knotted.
Furthermore, almost every rooted (general or reduced) virtual knot diagram contains any
1-component, prime 1-tangle virtual diagram P “linearly often:” For any such prime 1-tangle
diagram P , there exists N ≥ 0 and constants d < 1, c > 0 so that for n ≥ N ,

P(a virtual knot diagram K contains ≤ cn copies of P as connect summands) < dn.

This proposition provides an important observation into the structure of large random
virtual knot diagrams. P could be a virtual tangle which adds significant genus such as that
in Figure 8.3. Then, because for two virtual knots K1 and K2 one has that g(K1#K2) ≥
g(K1) + g(K2) − 1 [73], inclusion of linearly many ≥ cn copies of P guarantees that the
underlying genus of the resultant random diagram’s virtual knot type grows at least linearly
in its number of (actual and virtual) crossings n.

8.2.2 Diagrams on a surface of fixed genus

The definition of a virtual diagram presented in the prior section has a few quirks. For one, it
treats virtual crossings as equal citizens to real, signed crossings. As defined, virtual crossings
are merely an artifact of a projection of a virtual knot to the sphere. Fortunately, the flexible
map framework already exists to define a model of virtual diagrams in this light.

Definition 8.4. A virtual link shadow M = (A,E,C) of genus g is a 4-valent map on the
orientable surface Σ of genus g. The definition of link component for classical link shadows
extends immediately to virtual link shadows. A virtual knot shadow is a virtual link shadow
which has precisely one link component. We will use K Σ to denote the class of knot shadows
on a fixed surface Σ. Furthermore, we will denote by G the class of knot shadows on any
orientable surface.
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Figure 8.3: A virtual tangle whose closure has underlying genus 2, which is an opening of
Kishino’s knot.

A virtual knot diagram D of genus g is a virtual knot shadow on an orientable surface Σ
of genus g with each crossing decorated with signs from a set S (usually, S = {+,−}). We
will use KΣ to denote the class of knot diagrams on a fixed surface Σ. Furthermore, we will
denote by G the class of knot diagrams on any orientable surface.

As discussed in Section 3.1.3, G and G are respectively the classes of signed Gauss diagrams
and directed signed Gauss diagrams.

By Euler characteristic, we can compare counts of crossings, arcs, edges, and faces of a
virtual link shadow as they relate to the genus g of the embedding surface. Namely, if there
are n crossings, there must be 4n arcs, and 2n edges. The count on faces in C ◦ E then is
n+ 2− 2g.

Under this definition for virtual knot diagrams, the notion of virtual knot type is a
bit more obfuscated. We would like to impose a definition like, “a virtual knot type is an
equivalence class of virtual knot diagrams modulo the classical Reidemeister moves,” but we
must be careful to incorporate (de)stabilization:

It is possible that a Reidemeister II type move can change the genus of a virtual knot
diagram. We may say that two virtual knot diagrams D1 and D2 on surfaces of the same
genus g have equivalent virtual knot type if they differ by a classical Reidemeister move
(which does not change the genus of the diagram). Furthermore we require the following
additional equivalence: Let D1 be a virtual diagram on a surface of genus g and D2 on a
surface of genus g + 1. If a Reidemeister II type move which reduces the number of crossings
of D2 reduces the genus by 1, consider its result D′2 to be embedded in that surface of genus
g. If D′2 = D1 in this surface, then say D1 and D2 have equivalent virtual knot type.

Definition 8.5. The virtual knot type of a virtual knot diagram is an equivalence class under
the above equivalence.

For many different classes of maps C S on a fixed surface S, it has been shown [25, 10]
that

cSn ∼ κ(C , S)τ(C )nnγ(C ,χ(S)),
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where κ(C , S) is a constant depending on the class and the surface, τ(C ) is a constant
depending on the class, and γ(C , χ(S)) is a constant depending on the class and the Euler
characteristic of the surface. This naturally leads to the conjecture,

Conjecture 8.2. The asymptotic growth of knot diagrams on an arbitrary fixed surface Σ is
conjectured to be

κΣ
n

2n
= kΣ

n ∼
n→∞

c′′µn · nγ′′(K ,χ(Σ)),

where µ is the same exponential growth rate conjectured for the class of knot shadows, c′′ is an
arbitrary constant, and γ′′(K , χ(Σ)) is a constant depending only on the Euler characteristic
of the surface Σ (it is believed that γ′′(K , χ(Σ)) = χ(Σ)+constant).

There is even difficulty in proving the existence of the exponential growth rate

lim
n→∞

(kΣ
n )1/n;

composition by—for instance—connect summation is additive on the genus of the surface Σ,
and hence produces diagrams on surfaces of higher genus for Σ 6= S2. The methods of Bender
and Canfield [10] require some understanding of the growth rates of maps with marked
vertices of arbitrary degree which, are not yet well-enough understood: These growth rates
are still only conjectured; see Chapter 6. As usual, a smooth growth result would prove a
pattern theorem for virtual knot diagrams of fixed underlying genus, provided tangles whose
insertion now must also preserve the surface genus of the resultant diagram.

In the case of virtual knot shadows of arbitrary genus G , we know precise counts, as given
in Section 3.1.3. These objects are differently complicated, as the limit

lim
n→∞

g1/n
n = lim

n→∞

(
(2n)!

n!

)1/n

=∞

is infinite. Hence a pattern theorem would need to be proved through different means, and
may take on a different form. From this viewpoint, Linial and Nowik [69] have shown that
the average underlying genus of a virtual knot shadow is n

2
+ Θ(lnn). One could hope to

further prove a result on the variance of the underlying genus [26] or even a Harer-Zagier
formula [111] for the bivariate generating function of virtual knot shadows of fixed genus and
size.

8.3 More reasoning on the growth rate of open knot diagrams

As mentioned in the section prior, the problem of fixing surface genus is closely related to the
problem of fixing marked vertices of arbitrary degree. Hence there is yet another argument
for the exponential growth term

lim
n→∞

sk1/n
n = µ

in Conjecture 6.9. Consider a subknot shadow. Its two loose ends either lie in the same face,
or in two different faces. This leads to the decomposition of the class of subknot shadows into

SK = SK [0] ∪ SK [≥ 1],
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where SK [0] consists of all subknot shadows whose loose ends lie in the same face and
SK [≥ 1] consists of all subknot shadows whose loose ends lie in different faces. Observe that
SK [0] is equivalent to K by joining the loose ends to form the root edge (whose direction
is determined by the order of the loose ends which were joined).

On the other hand, consider a subknot shadow D in SK [≥ 1]; by adding a handle
connecting both of the faces in D with loose ends, one is able to produce a new rooted knot
shadow D′ on the torus by now joining the two loose ends in D by way of the added handle;
observe that all faces in D′ are still disks as critical for the definition of a map. This produces
an injection from SK [≥ 1] into K T , the class of knot shadows on the torus.

If in fact Conjecture 8.2 is true, that SK decomposes into rooted knot shadows and a
subset of rooted knot shadows on the torus would imply that the exponential growth terms
for subknot shadows is the same as knot shadows.
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Chapter 9

A Markov Chain Monte Carlo Sampler for Knot Shadows

As we discussed in Chapter 5, knot shadows become exponentially rare in link shadows making
rejection sampling progressively more difficult. In this chapter, we present an alternative
approach by using a Markov chain whose transitions explore the space of knot diagrams. The
work in this chapter is done together with Andrew Rechnitzer.

9.1 Flat Reidemeister moves

The Reidemeister moves in Figure 2.4 are fundamental in the study of knot diagrams. As
knot shadows are knot diagrams without crossing information, define the flat Reidemeister
moves to be the same as the normal moves, except ignoring crossing information [53]. Any
two knot shadows are related by a sequence of flat Reidemeister moves:

Proposition 9.1. Any knot shadow M can be brought to the trivial shadow by a sequence of
flat Reidemeister moves.

Proof. There is a crossing assignment for M which produces an unknotted diagram D:
Continue around the link component from the root arc, picking a sign at each crossing so
that the first time a crossing is visited, the strand we are traversing passes over the other.
Reidemeister’s theorem asserts the existence of a sequence (φ1, φ2, . . . , φk) of Reidemeister
moves which take D to the trivial diagram. The sequence (φ′1, φ

′
2, . . . , φ

′
k) of flat Reidemeister

moves takes M to the trivial shadow.

Notably, this method of proof does not guarantee that the sequence is minimal in any
sense. Interesting questions remain open about the flat Reidemeister moves. For instance,
neither the diameter of the spaces K≤n connected by flat Reidemeister transitions nor the
expected distance between two arbitrary knot shadows are known [81].

The flat Reidemeister moves are then a natural set of basic transitions for a Markov chain
on K . A key property is that they are all reversible. Let D be a rooted knot shadow with
root arc a.

Shadow Reidemeister I loop addition, RI+. Given the root arc a = a1, the loop addition
RI+ is always possible.

Loop addition is performed as follows. Let (a1a2) = e(a1), and let a3, a4, a5, a6 be four
new arcs. Then RI+(D, a1) is the rooted map produced by deleting edge e(a1) from D, then
adding the vertex (a3a4a5a6) and edges (a1a4), (a5a6), and (a3a2). The new root is the arc
a6. One can verify that this process is invertible, in particular that:

D = RI−(RI+(D, a1), a6).



89

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2 a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4 a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6RI+(M,a1)

RI−(M ′, a6)

Figure 9.1: The flat Reidemeister I moves
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RII+(M,a1, a3)

RII−(M ′, a6)

Figure 9.2: The flat Reidemeister II moves

Shadow Reidemeister I loop deletion, RI−. Loop deletion RI− is possible whenever, given
the arc a = a6, the face f(a6) is a singleton.

If this is true, then RI−(D, a6) is the rooted map produced from deleting the vertex
v(a6) = (a3a4a5a6) and the edges e(a6) = (a6a5), e(a3) = (a3a2), e(a4) = (a4a1) from D, and
adding the edge (a1a2). The arcs a3, a4, a5, a6 are discarded. The new root is the arc a1. This
process is invertible:

D = RI+(RI−(D, a6), a1).

The moves RI+ and RI− are demonstrated in Figure 9.1.
Shadow Reidemeister II bigon addition, RII+. Bigon addition RII+ additionally requires

a different arc b which is different from the root arc a in f(a). Let a = a1 and b = a3.
The rooted map RII+(D, a1, a3) is constructed from D as follows. Delete the edges

e(a1) = (a1a2) and e(a3) = (a3a4) from D. Add eight new arcs a5, a6, a7, a8, a9, a10, a11, a12.
Add the vertices (a6a10a9a7) and (a5a8a12a11). Insert the edges (a2a9), (a3a10), (a7a8), (a5a6),
(a1a12), and (a4a11). The new root is the arc a6. This process is invertible:

D = RII−(RII+(D, a1, a3), a6).

Shadow Reidemeister II bigon deletion, RII−. Bigon deletion RII− is possible provided
the root arc a = a6 is on a face f(a6) which consists of precisely two arcs (i.e. a bigon).

Additionally, it is required that the two exterior faces which are merged by the transition
be distinct ; this is required to preserve connectedness and genus. Indeed, suppose that D is a
shadow embedded on an orientable surface of genus g, so that v(D)− e(D) + f(D) = 2(g− 1),
but that the faces to be merged are not distinct. The number of vertices and edges decrease
by 2 and 4 respectively by a RII− operation, as usual, but the number of faces now remains
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Figure 9.3: The flat Reidemeister III move

fixed. This implies that the produced shadow lives in either a surface of one fewer genus, or if
the original map was embedded on the sphere, two disjoint spheres.

The rooted map RII−(D, a6) is constructed from D as follows. Delete the vertex v(a6) =
(a6a10a9a7) and the edges e(a9) = (a2a9), e(a10) = (a3a10), e(a7) = (a7a8) and e(a6) = (a6a5).
Delete the vertex v(a5) = (a5a8a12a11) and the edges e(a12) = (a1a12) and e(a11) = (a4a11).
Add the edges (a1a2) and (a3a4). The arcs a5, a6, a7, a8, a9, a10, a11, a12 are discarded. The
new root is the arc a1. This process is invertible:

D = RII+(RII−(D, a6), a1, a3).

The moves RII+ and RII− are demonstrated in Figure 9.2.
Shadow Reidemeister III triangle flip, RIII. Triangle flipping RIII is possible provided

the root arc a = a8 lies on a face f(a8) with precisely three arcs, all of whom are contained
in different vertices (i.e. a nondegenerate triangle).

The rooted map RIII(D, a8) is constructed from D as follows. Say that v(a8) = (a1a2a7a8),
e(a8) = (a8a9), e(a7) = (a6a7), v(a6) = (a5a11a12a6), and v(a9) = (a3a9a10a4). Delete vertices
v(a7), v(a6), v(a9) and edges e(a7), e(a8), and e(a10). Insert vertices (a6a8a11a1), (a2a10a7a3),
(a4a12a9a5) and edges (a6a9), (a7a12), and (a10a11). The new root is the arc a11. This process
is invertible:

D = RIII(RIII(D, a8), a11).

The move RIII is demonstrated in Figure 9.3.

9.2 Markov Chain

Using the operations above, we describe a Markov chain on K . We will subsequently show
that it is ergodic. Let 0 < z < 1 be an arbitrary parameter called a Boltzmann weight. Our
Markov chain on knot shadows will limit on a Boltzmann distribution, where the probability
of sampling an object of size n is proportional to zn. The Boltzmann weight z hence gives
us control over the sizes of our samples, and prevents the chain from tending to produce
infinitely large objects.

Let Di be the input rooted knot shadow with n vertices and root arc a and perform one
of the following six subprocedures with equal probability (failure means to set Di+1 := Di):
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1. Loop addition. Sample 0 ≤ α < 1 and fail immediately if α > z. Return Di+1 :=
RI+(Di, a).

The probability that this transition succeeds on an n-vertex knot shadow D is z/6.

2. Loop deletion. Provided f(a) is a loop, return Di+1 := RI−(Di, a).

The probability that this transition succeeds if root arc a has f(a) a loop in D is 1/6.

3. Bigon addition. Sample 0 ≤ α < 1 and fail immediately if α > z2. The arc a lies along a
face of d edges; provided d 6= 1 (otherwise fail), uniformly sample the integer k between
1 and d− 1. The arc a′ = (C ◦ E)k(a) is a distinct arc along the same face as a. Then
return Di+1 := RII+(Di, a, a

′).

The probability that this transition succeeds on any given additional arc a′ along the
root d-face is

z2

6(d− 1)
.

4. Bigon deletion. Fail if the arc a does not lie along a bigon. The size d of the face which
would be produced by bigon deletion is the sum |f(E ◦C(a))|+ |f(C3 ◦E(a))| − 2 = d.
Sample 0 ≤ β < 1 uniformly and fail if β > (d − 1)−1. Otherwise, return Di+1 :=
RII−(Di, a).

The probability that this transition succeeds on a root a along a bigon is

1

6(d− 1)
.

5. Triangle flipping. Fail if the arc a does not lie along a nondegenerate triangle. Otherwise,
return Di+1 := RIII(Di, a).

The probability that this transition succeeds assuming the root lies along a nondegen-
erate triangle is 1/6.

6. Re-rooting. Given the rooted diagram Di, forget the root and select a new root b for
Di+1 from the (autDi)/(4|D|) choices. The probability that this transition succeeds is
1/6.

The we claim that the limiting distribution of this Markov chain has that the probability
that any given n-crossing rooted knot shadow D is chosen is P(D) = zn/K(z), and if K(z)
converges to a number, P(D) ∝ zn. It follows that, if we ignore the roots of the sampled
diagrams in order to sample unrooted diagrams, the probability of an unrooted diagram D
being sampled is

P(D) ∝ 4n

autD
zn.

We note that as the probability that the automorphism group of a knot shadow is trivial
tends exponentially quickly to 1 [24], the actual probability of an unrooted diagram D will
typically look like P(D) ∝ 4nzn.
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The detailed balance condition is sufficient to show that a Markov chain has a stationary
distribution. It amounts to showing, that for a probability distribution P, the transition
probabilities from states A to B, π(A→ B), satisfy,

π(A→ B)P(A) = π(B → A)P(B).

We prove:

Theorem 9.2. This Markov chain satisfies detailed balance, and is ergodic. Hence, it has
the unique limiting stationary distribution where the probability of sampling any n-crossing
rooted knot shadow D is precisely,

P(D) = zn/K(z).

Proof. Let D be a rooted knot shadow of n vertices and a be the root arc in D. Observe
first that the three pairs of reversing transitions (RI+,RI−), (RII+,RII−), and (RIII,RIII) all
change the number of vertices by distinct complementary amounts; hence any two diagrams
can be related by at most one pair of transitions, or, if their vertex counts agree, a re-rooting.

Let P be the probability distribution on rooted knot shadows given by, P(D) = zn/K(z).
Then we show that our Markov chain, together with P, satisfies detailed balance:

1. Suppose that N = RI+(D, a) with root arc b. This means that N is unique in that
D = RI−(N, b). Then

π(D → N)P(D) = π(N → D)P(N)

z

6
zn =

1

6
zn+1.

2. Suppose that N = RII+(D, a, a′) with root arc b. This means that N is unique in that
D = RII−(N, b). The arcs a, a′ lie along a face in D of degree d. Then

π(D → N)P(D) = π(N → D)P(N)

z2

6(d− 1)
zn =

1

6(d− 1)
zn+2.

3. Suppose that N 6= RIII(D, a) and that N is a re-rooting of D. Then,

π(D → N)P(D) = π(N → D)P(N)

1

6

autD

4n
zn =

1

6

autN

4n
zn.

Note that autD = autN as they have the same underlying map structure (and so may
only differ by choice of root).

4. Suppose that N = RIII(D, a) has root b and that N is not a re-rooting of D. Then N
is unique in that D = RIII(N, b), so

π(D → N)P(D) = π(N → D)P(N)

1

6
zn =

1

6
zn.
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5. If N = RIII(D, a) has root b and N is a re-rooting of D, then the transition probabilities
of the previous two cases are summed, so that

π(D → N)P(D) = π(N → D)P(N)(
1

6
+

1

6

autD

4n

)
zn =

(
1

6
+

1

6

autN

4n

)
zn.

In all other cases, the transition probabilities are symmetrically zero. This proves detailed
balance, and hence that P is a limiting stationary distribution for our Markov chain. Proposi-
tion 9.1 says that our Markov chain is connected—it is possible to get from any one state
to any other. Furthermore, our Markov chain is aperiodic—any rooted shadow state may
remain fixed during a transition step if it is re-rooted with the same root. These latter two
conditions, together with detailed balance, say that the Markov chain is ergodic.

A Markov chain which satisfies detailed balance and is ergodic has a unique limiting
stationary distribution, which necessarily is P.

Any knot shadow exhibits a sequence of flat Reidemeister moves which never increases
the number of vertices and ultimately produces the trivial knot shadow [81]. This is in
opposition to the case of all knot diagrams, where there exist diagrams of knots which can be
reduced in crossing number, but only through sequences which increase the crossing number
at some point. This property of knot shadows yields the result that truncating the Markov
chain at some highest number of vertices n will still be ergodic on the truncated class of knot
shadows.

Proposition 9.3. Imposing the further restriction on the loop addition and bigon addition
transitions that we fail if the input knot shadow D would transition to have more than L
vertices ( i.e. if D has L or L− 1 vertices, respectively) yields a Markov chain which explores
all of Ki≤L and is ergodic. Furthermore, the probability of sampling any knot shadow D with
m ≤ L crossings is,

P(D) =
zm∑L
`=1 k`z

`
∝ zm.

Proof. If D,N are two knot shadows with at most L vertices, then there exists sequences
of flat Reidemeister moves which reduce D and N to the trivial knot shadow without ever
adding vertices [81]. Following the sequence for D followed by the inverse of the sequence for
N yields a path through knot shadows from D to N which never involves an shadow with
greater than L vertices (as both D and N have at most that many).

The detailed balance requirement and result about probabilities follows from the above
proof; we have only symmetrically zeroed out the transition probabilities between knot
shadows with at most L vertices and those with more.

9.3 Simulations and Data

We implemented the Markov Chain Monte Carlo sampler in C. Planar knot shadows are
stored as combinatorial maps; a collection of vertices, edges, and arcs with bidirectional
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references between arcs and their vertices, as well as arcs and their edges. At each step, an
arc is selected from the diagram at random; this takes near O(1) time, and the parameter α
is sampled at random. Both of the RI moves, as well as the RIII move take constant time.
The RII+ move requires an extra random number γ which determines the second arc for
the transition and is otherwise performed in constant time. The RII− move requires both
the sampling of the additional number β as well as a count of the face sizes diagonal to the
bigon. A planar knot shadow has average face degree strictly increasing and limiting on 4, so
counting the face sizes requires a constant number of operations on average.

9.3.1 Comparison with uniform rejection sampling

Recall the following summary of Chapter 5: For low numbers n of crossings, it is possible to
sample knot shadows uniformly, by sampling uniformly 4-valent maps and then rejecting if
they do not obey the knot shadow property. The sampling of maps can be done, e.g. with
Gilles Schaeffer’s bijection with blossom trees [94, 93] as in his PlanarMap software. The
rejection step is simple, but 4-valent maps which are knot shadows become rare exponentially
quickly [95].

With this in mind, we can check how well our implementation converges to the uniform
distribution by comparing statistics. The following charts are based on the following data:

1. Uniform. Using a rejection sampler for knot shadows over the course of 72 hours, we
gathered more than 1.3× 106 samples of knot shadows with n vertices, for each n from
3 to 60.

2. All 4v. Using a uniform sampler for all 4-valent maps, we gathered precisely 105 samples
of 4-valent maps with n vertices, for each n from 3 to 60. This took approximately 24
minutes.

3. z = 0.098. Using our Markov Chain Monte Carlo algorithm on shadows of at most
100 vertices and a parameter of z = 0.098, we gathered a total of 105 samples of knot
shadows.

4. Wang-Landau. Using our Markov Chain Monte Carlo together with an implementation
of Wang-Landau tuning (see Section 9.3.2) we sampled a total of 107 knot shadows.
Under this, every n had at least 9× 104 samples.

First, we check the counts of faces of fixed degree which appear (this takes O(n) time to
compute as all knot shadows have n+ 2 faces). This data is presented in Figure 9.4. Similarly,
we also compare the average sizes of the largest face in the knot shadow, in Figure 9.5.

We also check curve invariants in the nature of Arnol’d [7]; by following the crossings
in order around the knot shadow and counting those which are “interlaced”, we are able
to compute −1

2
(2St+ J+), again in linear time. This invariant is related to the finite type

invariant v2 of knots; −1
8
(2St+ J+) is the average v2 invariant over all possible over-under

sign assignments to the knot shadow. This is presented in Figure 9.6.
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Figure 9.4: Difference from uniform data: Average counts of faces of degrees 1, 2, 3, 4.
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Figure 9.5: Difference from uniform data: Average size of largest face.
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9.3.2 Wang-Landau implementation

It is possible to implement instead the Markov chain while making use of Wang and Landau’s
algorithm [109], which after a tuning phase, flattens the histogram of shadow sizes so as to
lessen mixing time. As a consequence, the tuning phase provides approximate counts for the
number of knot shadows by their sizes.

Rather than provide a parameter z, sampling via a Wang-Landau implementation requires
a data structure (`, L, g), where:

1. ` is the minimum size to permit shadows to be. To ensure ergodicity, we always have
` = 1.

2. L is the maximum size to permit shadows to be.

3. g = (gi)
L
i=` is a vector of relative counting data in the following sense: If Gn = egn ,

then Gn/Gn−1 ≈ kn/kn−1. As knot shadows kn have no exact enumeration, this data is
gathered via a tuning phase, described below.

Given the tuning data, define tp(n,m) = gn − gm, unless m < ` or m > L in which case
tp(n,m) = 0. Wang-Landau flattened MCMC sampling then works as follows. Let Di be the
input rooted knot shadow with n vertices and root arc a and perform one of the following six
subprocedures with equal probability (failure means to set Di+1 := Di):

1. Loop addition. Sample 0 ≤ α < 1 and fail immediately if lnα > tp(|D|, |D|+ 1). Return
Di+1 := RI+(Di, a).
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2. Loop deletion. Provided f(a) is a loop, return Di+1 := RI−(Di, a).

3. Bigon addition. Sample 0 ≤ α < 1 and fail immediately if lnα > tp(|D|, |D|+ 2). The
arc a lies along a face of d edges; provided d 6= 1 (otherwise fail), uniformly sample the
integer k between 1 and d− 1. The arc a′ = (C ◦E)k(a) is a distinct arc along the same
face as a. Then return Di+1 := RII+(Di, a, a

′).

4. Bigon deletion. Fail if the arc a does not lie along a bigon. The size d of the face which
would be produced by bigon deletion is the sum |f(E ◦C(a))|+ |f(C3 ◦E(a))| − 2 = d.
Sample 0 ≤ β < 1 uniformly and fail if β > (d − 1)−1. Otherwise, return Di+1 :=
RII−(Di, a).

5. Triangle flipping. Fail if the arc a does not lie along a nondegenerate triangle. Otherwise,
return Di+1 := RIII(Di, a).

6. Re-rooting. Given the rooted diagram Di, forget the root and select a new root b for
Di+1 from the (autDi)/(4|D|) choices.

Before sampling, we have to gather data for g via a tuning algorithm with parameters
`, the smallest size diagram to allow in the sample space (always in this article ` = 1, as
otherwise it is not necessarily clear if the Markov chain is ergodic), L, the largest size diagram
in the sample space, and ε, which describes the desired flatness of the sampling histogram,
and ∆, a threshold for flatness of a histogram of occurrences (we set ∆ = 0.05).

A starting point D0 in the sample space of diagrams is chosen; our algorithm starts
with the figure-eight diagram. The vector g is initialized to 0. Finally, a scaling factor f is
initialized; we start it at f = 1.

The algorithm then proceeds as follows.

1. If f < ε, terminate.

2. A histogram H = (Hn)Ln=` of bins ` to L inclusive is initialized empty. This histogram
will track the occurrences of diagrams of size n at each step of the Markov chain.

3. Step, via the Wang-Landau weighted algorithm described above, producing Di+1 from
the current Di. Increment H|Di+1| by 1, and increment g|Di+1| by f .

4. Check if the histogram is ∆-flat, i.e., check if

minH

1−∆
>

∑L
i=`Hi

L− ` >
maxH

1 + ∆
.

If so, let f := f/2 and proceed with step (1), otherwise repeat step (3).

After tuning to ε = 10−6, we obtained approximate counts for n = 1 to n = 27 and
can compare the approximations to the precise counts from [113] in Table 9.1. Furthermore,
we can compare concurrent ratios egn−gn−1 ≈ kn/kn−1 to experimental data of [95]. Namely,
we compare our data to Schaeffer and Zinn-Justin’s experimental estimation of µ ≈ 11.4
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Table 9.1: Comparison of counts of rooted knot shadows from the Wang-Landau tuning step
with ε = 10−6, versus those gathered using a precise enumeration method [113].

n Markov chain estimated kn Exact kn

1 2. 2
2 8.01 8
3 42.55 42
4 261.8 260
5 1792.96 1796
6 13466.59 13396
7 106655.49 105706
8 875216.17 870772
9 7549328.53 7420836
10 66285927.69 65004584
11 587791105.84 582521748
12 5401476508.05 5320936416
13 50398345321.46 49402687392
14 470512414110.44 465189744448
15 4537054734491.55 4434492302426
16 43403803027731.8 42731740126228
17 425460054497142 415736458808868
18 4149163657635640 4079436831493480
19 41050203187910000 40338413922226212
20 402714061643008000 401652846850965808
21 4114866974623030000 4024556509468827432
22 40941798387842000000 40558226664529024000
23 415161875934869000000 410887438338905738908
24 4239414744208560000000 4182776248940752113344
25 42944527627509700000000 42770152711524569532616
26 447510601388730000000000 439143340987014152920384
27 4594711410395330000000000 4526179842103708969039296
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and conjectural value of γ = −1+
√

13
6

in Figure 9.7 by plotting the theoretical horizontal
asymptote µ, as well as the curve kn/kn−1 ∼ µ( n

n−1
)γ−2.

Evidence suggests that data gathered using the Wang-Landau MCMC algorithm matches
the proper uniform distribution. However, we have only presented data on the means of
various statistics. We can compare and examine the distributions of our various statistics,
for different fixed diagram sizes. In Figures 9.8, 9.9, and 9.10, we compare distributions for
n = 30 and n = 60 crossings.

9.4 Reidemeister Markov Chain and Similar Objects

Similar to how the Markov chain generated by BFCAF transitions can be used on other
self-avoiding objects, we can consider running our algorithm on other objects similar to knot
shadows.

For example, we can consider shadows of pairs of circles; the smallest such object is the
unique 2-crossing 4-valent planar map of 2 link components. In this case, the Markov chain
is still ergodic (the proof of Theorem 9.2 is not affected by the shadow having a different
number of link components).

In fact, the proof of Theorem 9.2 follows no matter the (fixed) number of link diagrams of
the space that the chain acts on. Hence this technique could be used to sample large shadows
of any fixed number of link components.

The Markov transitions presented here are based on the Reidemeister moves on knot
diagrams. It is thus natural to consider a Markov chain on knot diagrams generated by similar
transitions corresponding to the proper Reidemeister moves, taking into account over-under
signing of the diagram.
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Figure 9.8: Distribution of 2-gon counts for n = 30 and n = 60 crossings.
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Figure 9.9: Distribution of max face valence for n = 30 and n = 60 crossings.
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Indeed, we expect this Markov chain to be ergodic, and we expect transitions to be of
similar computational complexity. However, we note that Proposition 9.3 fails in this case: It
is known that there are diagrams who represent the same knot type, but whose transition
paths all involve an increase in the number of crossings [60]. To make matters worse, unlike
the spaces of knot shadows where the diameter has quadratic growth, the upper bound on
the diameters of the spaces of knot diagrams is exponential [81].

Hence in the case of knot diagrams, care must be taken to ensure that there are satisfactory
parameters for the Markov chain to converge to the uniform distribution in a reasonable
amount of time. It should be noted however that it is even more difficult to sample knot
diagrams of fixed knot type via uniform rejection sampling, as diagrams of any fixed knot
type are asymptotically exponentially rare. Furthermore, the widespread success in the use of
BFACF in sampling knotted polygons of fixed type yields hope for these methods.

Introduction of flat spatial graph Reidemeister moves described in Section 6.1—with
appropriate transition probabilities—would lead to a Markov chain Monte Carlo sampler for
spatial graph shadows for arbitrary fixed graphs G. Similarly, one could conceive of a sampler
for spatial graph diagrams of fixed knot type.

Virtual knot shadows of arbitrary genus can be sampled directly, without the need for a
Monte Carlo sampler, although one could examine if it is possible to develop such a Markov
chain. One obstruction is that most virtual knot shadows are nontrivial—they cannot be
reduced to the trivial diagram by a sequence of flat virtual Reidemeister moves [53, 55, 43].
It becomes even more complicated if we wished to create a sampler of shadows of fixed
underlying genus. As not much is known about invariants of virtual knot shadows, these are
interesting problems to consider.
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