Linear Algebra I: Homework 6

Due Friday, March 9, 2018

- 1. Answer whether the following are **subspaces** of the provided vector space.
 - a. For an $m \times n$ matrix M with $m \neq n$, is the set ker(M) a subspace of \mathbb{R}^n ?
 - b. For an $m \times n$ matrix M with $m \neq n$, is the set Im(M) a subspace of \mathbb{R}^n ?
 - c. Is the set of rational functions h(x) = f(x)/g(x) (with $g(x) \neq 0$) a subspace of the vector space of all functions?
 - d. For any 3×4 matrix M is the set of solutions to the equation

$$M\vec{x} = \begin{pmatrix} 3\\1\\-1 \end{pmatrix}$$

a subspace of \mathbb{R}^4 ?

2. a. How many ways are there to write the vector

$$\begin{pmatrix} 3\\ -1\\ 2 \end{pmatrix}$$

as a linear combination of the vectors:

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$

b. If $ad - bc \neq 0$, how many ways are there to write the vector $\vec{x} \in \mathbb{R}^2$ as a linear combination of the vectors:

$$\begin{pmatrix} a \\ c \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} b \\ d \end{pmatrix}$$

3. a. Find a set S of vectors so that

span (S) = Im
$$\begin{pmatrix} 1 & 2 & 2 & 3 \\ 1 & -1 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

b. Find a set S of vectors so that

span (S) = ker
$$\begin{pmatrix} 1 & 2 & 2 & 3 \\ 1 & -1 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

- 4. Suppose that the vectors $\vec{u}, \vec{v}, \vec{w}$ in \mathbb{R}^n are all *nonzero* and orthogonal to each other. Is the set $\{\vec{u}, \vec{v}, \vec{w}\}$ linearly dependent? **Hint:** What happens if $\vec{u} = a\vec{v} + b\vec{w}$?
- 5. Answer whether the following sets of vectors are linearly independent.

$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1 \end{pmatrix} \right\}$$
$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 0\\3\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0 \end{pmatrix} \right\}$$

b.

a.