Linear Algebra I: Homework 4

Due Friday, February 23, 2018

1. The rotation matrix R_{θ} is a matrix whose multiplication rotates vectors in \mathbb{R}^2 by θ radians counterclockwise. R_{θ} has the formula,

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

- a. Calculate the determinant of R_{θ} . Does it depend on θ ?
- b. Without doing any Gaussian elimination or using the formula for inverses of 2×2 matrices, find a concise formula for $(R_{\theta})^{-1}$. (Hint: Think about what R_{θ} does geometrically).
- c. Find a non-identity matrix $B \neq I$ for which $B^3 = BBB = I$.
- 2. If A is an $n \times n$ symmetric matrix (that is, $A^T = A$), and B is any $n \times m$ matrix, show that the following are symmetric:
 - a. $B^T B$
 - b. BB^T
 - c. $B^T A B$
- 3. Find the following determinants:

a. det
$$\begin{pmatrix} 2 & 3 & 7 & 0 \\ 0 & -3 & 1 & 3 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$

b. det
$$\begin{pmatrix} 1 & -4 & 1 \\ 0 & 3 & 1 \\ 2 & -8 & 2 \end{pmatrix}$$

- 4. a. A is an $n \times n$ matrix and det(A) = 2, find det(3A). (Hint: First calculate det(3I), then use that det(AB) = det(A) det(B).)
 - b. Is det a linear function on matrices?
- 5. a. For an $n \times n$ matrix $A = (a_i^i)$ and a number λ , compare $\operatorname{tr}(\lambda A)$ and $\lambda \operatorname{tr}(A)$.
 - b. For a pair of $n \times n$ matrices $A = (a_j^i)$ and $B = (b_j^i)$, compare tr(A + B) and tr(A) + tr(B).
 - c. Is tr a linear function on matrices?