
Math 317 Final Exam Practice Problems

1. Give an example for each of the following, or explain conclusively and clearly why one
cannot exist, stating any facts, definitions, and theorems that apply.

(a) A bounded set which is not an interval.

Example. The set {1, 2, 3} is bounded, but is not an interval.

Non-Example. The set Z is not an interval, but is unbounded.

Non-Example. The set N is not an interval, but is unbounded.

(b) An unbounded sequence (an) with lim sup an = 1.

Example. The sequence an = 1 − (1 + (−1)n)n is unbounded below, hence un-
bounded, but has lim sup an = 1.

Any example for this question must not be a convergent sequence (why?) and must
be bounded above. Note that 1 is not necessarily the sequence upper bound, for
instance:

Example. The sequence a1 = 300, an = 1 − (1 + (−1)n)n for n ≥ 2 is bounded
above by 300, but also satisfies.

(c) A divergent sequence (sn) with a convergent subsequence.

Any sequence which is bounded but divergent satisfies this condition by the Bolzano-
Weierstrauss theorem.

Example. sn = sinn is bounded by ±1, hence satisfies.

Any sequence with finite lim inf or lim sup satisfies, as the lim inf and lim sup are
in fact the infimum and supremum, respectively, of the set of subsequential limits.

Example. sn = |n sin(nπ/6)| is unbounded above, but has lim inf sn = 0. So, there
must be some subsequential limits which are close to 0. This means sn must have
a convergent subsequence.

Non-Example. cn = n diverges, and both lim inf cn = lim sup cn = +∞. We can
observe that cn has no convergent subsequence.

Non-Example. dn = (−1)nn diverges, and lim inf dn = −∞ while lim sup dn =
+∞. We can see that dn has no convergent subsequence.

(d) A continuous function on [0, 1] which is not uniformly continuous.

Cannot exist. Any function which is continuous on [0, 1] is uniformly continuous.

In fact, Any function which can be extended to a continuous function on a closed
interval [a, b] is uniformly continuous.

(e) A continuous function on (0, 1) which is not uniformly continuous.

Example. f(x) = 1/x

Example. f(x) = sin(1/x)

Non-Example. f(x) = x2, as this function can be extended to a continuous
function on [0, 1] by setting f(0) = 0 and f(1) = 1.

(f) A sequence of functions which are uniformly continuous on [3, 4] that does not
converge uniformly.

Example. fn(x) = (x− 3)n



(g) A function defined on (0, 1) that is not differentiable at any point in its domain.

Example. The function

f(x) =

{
1 x ∈ Q ∩ (0, 1)
0 x ∈ (0, 1) \Q

is not continuous anywhere, and hence is not differentiable anywhere.

Example. If a ∈ (0, 1), b ∈ N is odd, and ab > 1 + 3
2
π, the function

f(x) =
∞∑
n=0

an cos(bnπx)

called the Weierstrauss function is continuous everywhere but differentiable nowhere.

Example. Consider the floor function byc, which is the smallest integer smaller
than or equal to y. Let

fn(x) =
1

2n

∣∣∣∣2nx− ⌊2nx+
1

2

⌋∣∣∣∣ .
Then by the Weierstrauss M -test, we can see that

∑∞
n=1 fn(x) converges uniformly

to a function, call that function G(x). As each finite term gN(x) =
∑N

n=1 fn(x) is
continuous and G(x) is the uniform limit, G(x) is also continuous. But it can be
shown that G(x) is differentiable nowhere. (See example 38.1 in the textbook for
more information)

(h) A differentiable function defined on (0, 1) which is not uniformly continuous.

Example. f(x) = 1/x

Example. f(x) = sin(1/x)

(i) A bounded function on [0, 1] that is not integrable.

Example. The function

f(x) =

{
1 x ∈ Q ∩ [0, 1]
0 x ∈ [0, 1] \Q

is not integrable, as its upper integral is 1, while its lower integral is 0.

(j) Devise your own part to this question, and challenge your study group!

2. Answer whether each statement is true or false. If the statement is true, give a brief
explanation. If the statement is false, provide a counterexample.

(a) The set S = {p
q

: p, q ∈ Z, q > 20} is bounded below.

False. Consider any integer M < 0. Then with p = q(M − 1) ∈ Z, q = 21, we have

p

q
= (M − 1) < M,

while p
q
∈ S.
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(b) The sequence ( n
3n

) is a convergent sequence.

True. The limit is 0. Try proving this by the definition of a limit. Then try proving
that the sequence is bounded and Cauchy, hence convergent, without using what
the limit is. Finally, try using the Monotone Convergence Theorem.

(c) The equation cos(x) = tan(x) has a solution in [0, π/4] (note: 1√
2
< 1).

True. Consider F (x) = cos(x)−tan(x) and apply the Intermediate Value Theorem
to show that F (x) has a zero on [0, π/4].

(d) If a function f has a maximum at c ∈ R, then f is differentiable at c.

False. f might also be not differentiable. For instance, −|x| is not differentiable at
its maximum where x = 0.

(e) Suppose f and g are differentiable on all of R. Then,

h(x) = (f(x))2 − 3g(f(x))

is also differentiable on all of R.

True. By the product rule, scalar multiple rule, subtraction rule, and chain rule.
In fact,

h′(x) = 2(f(x))f ′(x)− 3g′(f(x))f ′(x).

(f) Suppose g is integrable on [a, b] and that there exists c ∈ (a, b) such that∫ c

a

g >

∫ b

a

g.

Then there exists d ∈ (a, b) so that g(d) < 0.

True. By Theorem 33.6,
∫ c
a
g +

∫ b
c
g =

∫ b
a
g <

∫ c
a
g, so we see that

∫ b
c
g < 0.

Now if g(x) ≥ 0 for all x ∈ [c, b], then by Theorem 33.4(i),
∫ b
c
≥ 0. But this is a

contradiction! So there exists x ∈ [c, b] so that g(x) < 0.

If x 6= b, we’re done, as then x ∈ (a, b). But if x = b, notice that we could consider
the function f(x) which is the same as g(x) except f(b) = 0. Now all integrals∫ s
r
g =

∫ s
r
f as they differ only at one point. Application of the above argument

shows that there exists d ∈ [c, b] so that f(d) < 0. But now we know that d 6= b, as
f(b) = 0. So d ∈ [c, b). Then g(d) = f(d) < 0.

(g) If hn(x) = x− xn then hn converges uniformly on [0, 1].

False. We have that the pointwise limit is,

h(x) =

{
0 x = 1
1 x 6= 1

The pointwise limit is the only candidate for the uniform limit. However, h(x) is
not continuous, while all hn(x) are. As the uniform limit of continuous functions
must be continuous, and h(x) is not, it must not be the uniform limit of hn(x). So
we conclude no uniform limit exists.
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(h) If
∑∞

n=1 an converges absolutely, then
∑∞

n=1 an sin(nx) converges uniformly on R.

True. For all n we have

|an sin(nx) = |an|| sin(nx)| < |an|,

as | sin(y)| < 1 for all y. Then as
∑
|an| converges, the Weierstrauss M -test implies

that the series
∑∞

n=1 an sin(nx) converges uniformly on R.

(i) Every power series converges on some interval (a, b) with a 6= b.

False.
∑∞

n=1 n!xn has radius of convergence 0 (by the ratio test), so it only converges
at x = 0. But {0} is not an interval of the required form.

(j) Devise your own part to this question, and challenge your study group!

3. Let f(x) = |x|3. Compute f (k)(x) for all k ≥ 1 and all x ∈ R.

Answer. f ′(x) = 3x|x| and f ′′(x) = 6|x|. f ′′′(x) = −6 if x < 0 and f ′′′(x) = 6 if x > 0,
and is undefined if x = 0. f (k)(x) = 0 except at 0 where it is undefined, for k ≥ 4.

When computing the derivatives at x = 0, you should use the limit definition of the
derivative.

4. Use the definition of differentiability to show that f(x) = x2 − 1 is differentiable at all
of R.

Answer.

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

x2 − 1− a2 + 1

x− a
= lim

x→a

(x− a)(x+ a)

x− a
= lim

x→a
x+ a = 2a

5. Use the definition of integrability to show that f(x) = 2x is integrable on [0, 1].

Answer. Consider the partitions Pn =
{

0, 1
n
, · · · , k

n
, · · · , 1

}
. Then

U(f, Pn) =
n∑
k=1

M

(
f,

[
k − 1

n
,
k

n

])(
k

n
− k − 1

n

)
=

n∑
k=1

2k

n

(
k

n
− k − 1

n

)
=

2

n2

n∑
k=1

k =
2

n2

n(n+ 1)

2
=
n+ 1

n
.

A similar calculation shows that L(f, Pn) = n−1
n

. Now, we know that

n+ 1

n
= U(f, Pn) ≥ U(f) ≥ L(f) ≥ L(f, Pn) =

n− 1

n
.

Taking limits as n→∞ yields,

1 ≥ U(f) ≥ L(f) ≥ 1,

so U(f) = L(f) = 1 and 2x is integrable over [0, 1].

Challenge. Use the Cauchy definition of integrability instead!
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6. Let fn(x) = sin (x/n).

(a) Find the pointwise limit f of the sequence (fn).

Answer. f(x) = 0

(b) Does (fn) converge uniformly to its pointwise limit f on [−π, π]? On all of R?

Answer. On [−π, π], the sequence converges uniformly. To see this, notice that
when n > 2, we have that for all x ∈ [−π, π],

|sin(x/n)| < |sin(π/n)|

Now, limn→∞ |sin(π/n)| = 0, so for all ε > 0 we have N so that n ≥ N implies that

|sin(x/n)| < |sin(π/n)| < ε.

Answer. On R, the sequence does not converge uniformly. Whenever x = nπ/2
we have that sin(x/n) = sin(π/2) = 1. For 0 < ε < 1, this means that at x = nπ/2,
| sin(x/n)| > ε.

7. Use that lim
x→0

sinx

x
= 1 to compute the limit of the sequence (sn) = (n sin (π/n)).

Answer. That limx→0
sinx
x

= 1 means that for all sequences xn → 0, limn→∞
sinxn
xn

= 1.
So as π/n→ 0 we have that,

lim
n→∞

n sin
(π
n

)
= lim

n→∞

sin
(
π
n

)
1
n

= π lim
n→∞

sin
(
π
n

)
π
n

= π.

8. Determine whether each of the following sequences and series converge. (Also, identify
clearly which is a sequence and which is a series).

(a) (1− 2
n2 )

Answer. This sequence converges to 1.

(b)
∑∞

k=1
1√
k

Answer. This series diverges by the comparison test: 1/
√
k > 1/k but

∑
1/k

does not converge.

(c) (1 + (−1)n)1/n

Answer. This sequence does not converge. Its lim inf is 0, while its lim sup is 1.

(d)
∑∞

k=0
2k

k!

Answer. This series converges by the ratio test.

9. Determine whether or not the function sequence or series converges (pointwise or uni-
formly) on the given domain.

(a) The sequence (gn) on (0, 1), where gn(x) = x
nx+1

Answer. This sequence converges uniformly to g(x) = 0. We have that 0 < x
nx+1

<
1
n

for all n and all x > 0. So when n > N = 1
ε
,∣∣∣∣ x

nx+ 1
− 0

∣∣∣∣ < 1

n
< ε.
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(b) The series
∑∞

n=1 fn(x) on R, where fn(x) = 0 if x ≤ n and fn(x) = (−1)n if x > n.

Answer. This sequence converges pointwise to its limit, as for all x, the sum∑∞
n=1 fn(x) only has a finite number of nonzero terms.

The sequence does not converge uniformly. Consider ε < 1. For m ∈ N, notice
that |

∑m
n=1 fn(2m+ (1/2))| = | − 1| > ε. So there cannot exist sufficient N for the

definition of uniform convergence.

10. Determine the interval of convergence of the following power series.

(a)
∑
n2xn

Answer. R = 1, as lim sup(n2)1/n = 1, so the series converges on (−1, 1).

As (±1)nn2 does not converge to 0 as n→∞, we conclude that the series does not
converge at ±1.

So the interval of convergence is (−1, 1).

(b)
∑

(x/n)n

Answer. R = +∞, so the series converges for all x.

(c)
∑
xn!

Answer. R = 1, as lim sup(an)1/n = 1 (a1 = 2, an = 1 if n = k! for some integer
k > 1, and an = 0 otherwise). so the series converges on (−1, 1).

As (±1)nan diverges as n → ∞, we conclude that the series does not converge at
±1.

So the interval of convergence is (−1, 1).

(d)
∑(

3n

n4n

)
xn

Answer. R = 4/3. So, the series definitely converges on (−4/3, 4/3).

We check x = −4/3:
∑(

3n

n4n

)
(−4/3)n =

∑ (−1)n
n

which does converge by the
alternating series test.

We check x = 4/3:
∑(

3n

n4n

)
(4/3)n =

∑
1
n

which does not converge.

So, the series converges on [−4/3, 4/3)
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