Math 317 Final Exam Practice Problems

- 1. Give an example for each of the following, or explain conclusively and clearly why one cannot exist, stating any facts, definitions, and theorems that apply.
 - (a) A bounded set which is not an interval.
 - (b) An unbounded sequence (a_n) with $\limsup a_n = 1$.
 - (c) A divergent sequence (s_n) with a convergent subsequence.
 - (d) A continuous function on [0, 1] which is not uniformly continuous.
 - (e) A continuous function on (0, 1) which is not uniformly continuous.
 - (f) A sequence of functions which are uniformly continuous on [3,4] that does not converge uniformly.
 - (g) A function defined on (0, 1) that is not differentiable at any point in its domain.
 - (h) A differentiable function defined on (0, 1) which is not uniformly continuous.
 - (i) A bounded function on [0, 1] that is not integrable.

(j) Devise your own part to this question, and challenge your study group!

- 2. Answer whether each statement is true or false. If the statement is true, give a brief explanation. If the statement is false, provide a counterexample.
 - (a) The set $S = \{\frac{p}{q} : p, q \in \mathbb{Z}, q > 20\}$ is bounded below.
 - (b) The sequence $\left(\frac{n}{3^n}\right)$ is a convergent sequence.
 - (c) The equation $\cos(x) = \tan(x)$ has a solution in $[0, \pi/4]$ (note: $\frac{1}{\sqrt{2}} < 1$).
 - (d) If a function f has a maximum at $c \in \mathbb{R}$, then f is differentiable at c.
 - (e) Suppose f and g are differentiable on all of \mathbb{R} . Then,

$$h(x) = (f(x))^2 - 3g(f(x))$$

is also differentiable on all of \mathbb{R} .

(f) Suppose g is integrable on [a, b] and that there exists $c \in (a, b)$ such that

$$\int_{a}^{c} g > \int_{a}^{b} g.$$

Then there exists $d \in (a, b)$ so that g(d) < 0.

- (g) If $h_n(x) = x x^n$ then h_n converges uniformly on [0, 1].
- (h) If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n \sin(nx)$ converges uniformly on \mathbb{R} .
- (i) Every power series converges on some interval (a, b) with $a \neq b$.

(j) Devise your own part to this question, and challenge your study group!

3. Let $f(x) = |x|^3$. Compute $f^{(k)}(x)$ for all $k \ge 1$ and all $x \in \mathbb{R}$.

- 4. Use the definition of differentiability to show that $f(x) = x^2 1$ is differentiable at all of \mathbb{R} .
- 5. Use the definition of integrability to show that f(x) = 2x is integrable on [0, 1].
- 6. Let $f_n(x) = \sin(x/n)$.
 - (a) Find the pointwise limit f of the sequence (f_n) .
 - (b) Does (f_n) converge uniformly to its pointwise limit f on $[-\pi, \pi]$? On all of \mathbb{R} ?
- 7. Use that $\lim_{x \to \infty} \frac{\sin x}{x} = 1$ to compute the limit of the sequence $(s_n) = (n \sin (\pi/n))$.
- 8. Determine whether each of the following sequences and series converge. (Also, identify clearly which is a **sequence** and which is a **series**).

(a)
$$(1 - \frac{2}{n^2})$$

(b) $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$
(c) $(1 + (-1)^n)^{1/n}$
(d) $\sum_{k=0}^{\infty} \frac{2^k}{k!}$

- 9. Determine whether or not the function sequence or series converges (pointwise or uniformly) on the given domain.
 - (a) The sequence (g_n) on (0,1), where $g_n(x) = \frac{x}{nx+1}$
 - (b) The series $\sum_{n=1}^{\infty} f_n(x)$ on \mathbb{R} , where $f_n(x) = 0$ if $x \le n$ and $f_n(x) = (-1)^n$ if x > n.
- 10. Determine the interval of convergence of the following power series.

(a)
$$\sum n^2 x^n$$

(b)
$$\sum (x/n)^{r}$$

- (c) $\sum x^{n!}$
- (d) $\sum \left(\frac{3^n}{n4^n}\right) x^n$