Math 317 Midterm Exam #2 Practice Problems

- 1. Give an example for each of the following, or explain conclusively and clearly why one cannot exist, stating any facts, definitions, and theorems that apply.
 - (a) A series which converges, but does not converge absolutely. Example. $\sum (-1)^n (1/n)$
 - (b) A function which is uniformly continuous on a set S and unbounded on S. **Example.** f(x) = x on the set $S = \mathbb{R}$. (On the other hand, if S is bounded, then a uniformly continuous function must be bounded on S)
 - (c) A function f and a sequence (x_n) so that (x_n) converges, but $(f(x_n))$ diverges. **Example.** f(x) = 1/x, together with the sequence $x_n = 1/n$. Then $\lim f(x_n) = \lim n = +\infty$, so the sequence $(f(x_n))$ diverges.
 - (d) A power series g(x) with radius of convergence 1 that converges for x = -1. Example. $g(x) = \sum (1/n)x^n$
 - (e) A function which is uniformly continuous but not continuous.
 Cannot exist. A function that is uniformly continuous is also continuous. (Uniform continuity is more restrictive than continuity)
 - (f) A uniformly convergent function series that is not a power series. **Example.** $g(x) = \sum \frac{\sin x}{n^2}$ converges uniformly to a function on \mathbb{R} by the Weierstrauss M test, with sequence $M_n = 1/n^2$.
 - (g) A sequence (x_n) for which $\liminf x_n \neq \limsup x_n$. **Example.** A divergent sequence which does not diverge to $\pm \infty$ will suffice here. For example, $x_n = \sin n$.
 - (h) A sequence (s_n) for which $\liminf s_n$ is undefined. **Cannot exist.** Both \liminf and \limsup always exist for a sequence of real numbers, although they may either be real or $\pm \infty$.
- 2. Answer whether each statement is true or false. If the statement is true, give a brief explanation. If the statement is false, provide a counterexample.
 - (a) Any function f: {3} → R is continuous at 3.
 True. The only sequence (x_n) in the domain of f tending to 3 is the sequence (x_n) = 3, and lim f(x_n) = lim f(3) = f(3) so f is continuous by definition.
 - (b) If (x_n) is a sequence of real numbers and (x_{n_k}) is any subsequence, then

$$\limsup_{n \to \infty} x_n \le \limsup_{k \to \infty} x_{n_k}.$$

False. For example, consider the sequence $x_n = (-1)^n$ with subsequence $x_{n_k} = -1$.

(c) If a function f(x) is continuous on a set S and (x_n) is a sequence in S which converges to a real number x, then lim f(x_n) = f(x).
False. If the limit x is not in S, then continuity of f on S says nothing about f(x). For instance, f(x) = 1/x is continuous on the set (0, 1), and the sequence x_n = 1/n converges to 0, but f(x) does not exist and hence cannot equal lim f(1/n) = +∞.

(d) Every sequence of continuous functions converges pointwise to a continuous function.

False. Only uniform convergence of continuous functions guarantees continuity. For example, consider the function sequence $f_n(x) = \frac{x^n}{1+x^n}$ on domain [0, 2].

(e) Any function $h : \mathbb{R} \to \mathbb{R}$ satisfying

$$\lim_{c \to 0} h(x+c) - h(x-c) = 0$$

is continuous.

False. Consider the function h(x) = 0 if $x \neq 0$ and h(x) = 1 if x = 0. Then at x = 0, h(c) = h(-c) = 0 for all $c \neq 0$, so $\lim_{c\to 0} h(c) - h(-c) = 0$. But h(x) is not continuous at x = 0. Furthermore, at $x \neq 0$, the limit required is still 0 (why?). So h satisfies the condition for all $x \in \mathbb{R}$ but is not continuous.

- (f) The equation $2x^{14} 10x^7 + 2 = 5x^{61} + 4x^{19} 1$ has a solution in the interval [0, 1]. **True.** Let $f(x) = 2x^{14} - 10x^7 + 2 - 5x^{61} - 4x^{19} + 1$. Then if f(x) has a zero on [0, 1], the equation has a solution on [0, 1]. Now, f(1) = 2 - 10 + 2 - 5 - 4 + 1 = -14 while f(0) = 2 + 1 = 3. As f is a polynomial function, it is continuous, hence by the Mean Value Theorem, there exists a number $x \in [0, 1]$ so that f(x) = 0 because -14 < 0 < 3. So, there **is** a solution on the interval.
- 3. Define the series $\sum_{n=1}^{\infty} \frac{(-n)^{n-1}}{n!} x^n$. Explain why the series converges uniformly to a continuous function $W_0(x)$ on the interval (-1/e, 1/e). (The function $W_0(x)$ actually can be defined on a larger domain and is called the main branch of the Lambert W function. One nice property of this function is that, $W_0(xe^x) = x$ whenever $x \ge -1$.)

Solution. We have that $1/R = \limsup |a_n|^{1/n} \le \limsup \left|\frac{a_{n+1}}{a_n}\right|$. Now,

$$\limsup \left| \frac{a_{n+1}}{a_n} \right| = \limsup \frac{(n+1)^n}{(n+1)n!} \frac{n!}{n^{n-1}} = \limsup \left(\frac{n+1}{n} \right)^{n-1} = e$$

So $1/R \leq e$ implies that $1/e \leq R$, so as the power series converges uniformly on (-R, R) it also converges uniformly on $(-1/e, 1/e) \subseteq (-R, R)$. As each partial sum in the power series is a polynomial, it is continuous, hence its uniform limit is also continuous.

4. Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} x^n$$

Solution. We compute the radius of convergence of the power series.

$$\limsup \left| \frac{2^n}{\sqrt{n}} \right|^{1/n} = \limsup \frac{2}{n^{n/2}} = 2,$$

so the radius of convergence is 1/2. We know that the power series converges on (-1/2, 1/2), but we must check the endpoints. When x = -1/2, the power series becomes the series

$$\sum \frac{(-1)^n}{\sqrt{n}}$$

which converges by the alternating series test. On the other hand, when x = 1/2, the power series becomes

$$\sum \frac{1}{\sqrt{n}}$$

which diverges for example by comparison with $\sum 1/n$. Hence the interval of convergence of the power series is [-1/2, 1/2).