Math 317 Midterm Exam #2 Practice Problems

- 1. Give an example for each of the following, or explain conclusively and clearly why one cannot exist, stating any facts, definitions, and theorems that apply.
 - (a) A series which converges, but does not converge absolutely.
 - (b) A function which is uniformly continuous on a set S and unbounded on S.
 - (c) A function f and a sequence (x_n) so that (x_n) converges, but $(f(x_n))$ diverges.
 - (d) A power series g(x) with radius of convergence 1 that converges for x = -1.
 - (e) A function which is uniformly continuous but not continuous.
 - (f) A uniformly convergent function series that is not a power series.
 - (g) A sequence (x_n) for which $\liminf x_n \neq \limsup x_n$.
 - (h) A sequence (s_n) for which $\liminf s_n$ is undefined.
- 2. Answer whether each statement is true or false. If the statement is true, give a brief explanation. If the statement is false, provide a counterexample.
 - (a) Any function $f : \{3\} \to \mathbb{R}$ is continuous at 3.
 - (b) If (x_n) is a sequence of real numbers and (x_{n_k}) is any subsequence, then

$$\limsup_{n \to \infty} x_n \le \limsup_{k \to \infty} x_{n_k}.$$

- (c) If a function f(x) is continuous on a set S and (x_n) is a sequence in S which converges to a real number x, then $\lim f(x_n) = f(x)$.
- (d) Every sequence of continuous functions converges pointwise to a continuous function.
- (e) Any function $h : \mathbb{R} \to \mathbb{R}$ satisfying

$$\lim_{c \to 0} h(x+c) - h(x-c) = 0$$

is continuous.

- (f) The equation $2x^{14} 10x^7 + 2 = 5x^{61} + 4x^{19} 1$ has a solution in the interval [0, 1].
- 3. Define the series $\sum_{n=1}^{\infty} \frac{(-n)^{n-1}}{n!} x^n$. Explain why the series converges uniformly to a continuous function $W_0(x)$ on the interval (-1/e, 1/e). (The function $W_0(x)$ actually can be defined on a larger domain and is called the main branch of the Lambert W function. One nice property of this function is that, $W_0(xe^x) = x$ whenever $x \ge -1$.)
- 4. Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} x^n$$

A prior version of this question had the summation start at n = 0, which led to division by 0. The question has been updated.