Math 317 Midterm Exam #1 Practice Problems

- 1. Give an example for each of the following, or explain conclusively and clearly why one cannot exist, stating any facts, definitions, and theorems that apply.
 - (a) An alternating sequence which converges. (A sequence is *alternating* if its terms alternate between positive and negative)

Example. $a_n = (-1)^n / n$.

- (b) A sequence with no convergent subsequence. **Example.** $b_n = n$. If the sequence had to also be **bounded**, then no convergent subsequence would exist (Bolzano-Weierstrauss)
- (c) A decreasing sequence which diverges. **Example.** $c_n = -n$. If the sequence had to also be bounded, then it would have to converge (Monotone Convergence Theorem for sequences)
- (d) A sequence (s_n) with $\liminf s_n = -\infty$ and $\limsup s_n = +\infty$. Example. $s_n = (-n)^n$.
- 2. Answer whether each statement is true or false. If the statement is true, give a brief explanation. If the statement is false, provide a counterexample.
 - (a) Every bounded sequence contains its supremum. **False.** For example, the sequence $a_n = 1 - 1/n$ does not contain its supremum 1.
 - (b) Every Cauchy sequence is bounded. True. That every Cauchy sequence is bounded is a lemma we discussed in class. Similarly, you could reason that every Cauchy sequence converges, and that every convergent sequence must be bounded.
 - (c) Every increasing sequence is bounded. **False.** The sequence $c_n = n$ is increasing but unbounded.
 - (d) If a sequence converges to a number L, then so do all subsequences. **True.** This is a theorem about convergent sequences.
- 3. Find the limit of the sequence $\left(\frac{2n-3}{3n+1}\right)$ and prove that your limit is correct.

Proof. We claim that the limit is 2/3. Let $\varepsilon > 0$ and let

$$N = \frac{1}{3} \left(\frac{11}{3\varepsilon} - 1 \right).$$

Then we have that if n > N,

$$\left|\frac{2n-3}{3n+1}-\frac{2}{3}\right|=\frac{11}{3(3n+1)}<\frac{11}{3(3N+1)}=\varepsilon,$$

showing that the sequence indeed converges to 2/3.

4. Prove that the sequence (s_n) defined by $s_1 = 1$ and $s_{n+1} = \sqrt{3 + s_n}$ does **not** converge to 4.

Warning. It is not sufficient to show that the sequence is bounded above by 4!

Proof. We claim that the sequence is bounded by 3. Certainly $s_1 = 1 < 3$. Now, suppose $s_k < 3$. Then $3 + s_k < 3 + 3$ and so $\sqrt{3 + s_k} < \sqrt{6} < 3$, so $s_{k+1} < 3$. By induction, we conclude that $s_n < 3$ for all n. So $\sup\{s_n : n \in \mathbb{N}\} \le 3$ and as $\lim s_n$ (if it exists) must be less than $\sup\{s_n : n \in \mathbb{N}\}$, (s_n) cannot converge to 4.

5. A sequence is *periodic* if there exists $p \in \mathbb{N}$ so that $a_{n+p} = a_n$ for all natural numbers n. Let a_n be a periodic sequence for which $a_1 \neq a_{2019}$. Prove that (a_n) does not converge. (Hint: Is it Cauchy?)

Proof. As $a_1 \neq a_{2019}$, $|a_1 - a_{2019}| > 0$. Let N be any real number, and consider

$$0 < \varepsilon < |a_1 - a_{2019}|.$$

The sequence is periodic, so there is a number $p \in \mathbb{N}$ (called the period) so that $a_{n+p} = a_n$ for all natural numbers n.

By induction, $a_{\ell+kp} = a_{\ell}$ for all natural numbers ℓ , k (Proof: $a_{\ell+p} = a_{\ell}$ and if we assume that $a_{\ell+kp} = a_{\ell}$ then $a_{\ell+(k+1)p} = a_{(\ell+kp)+p} = a_{\ell+kp} = a_{\ell}$). By the Archimedean principle, there exists a natural number k so that kp > N - 1, so 1 + kp > N.

But then $|a_{1+kp} - a_{2019+kp}| = |a_1 - a_{2019}| > \varepsilon$ even though n = 1 + kp and m = 2019 + kp are both larger than N. So a_n cannot be Cauchy as N was arbitrary, and so a_n cannot converge.