Linear Algebra I: Homework 11

Due: Friday, November 17, 2017
    1. Find the explicit change of basis matrix from the standard basis \(E\) of \(\mathbb R^3\) to the orthonormal basis \(B\)

      \[\left( \begin{pmatrix} \frac{-1}{\sqrt 2} \\ \frac{-1}{\sqrt 3} \\ \frac{-1}{\sqrt 6} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt 2} \\ \frac{-1}{\sqrt 3} \\ \frac{-1}{\sqrt 6} \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{-1}{\sqrt 3} \\ \frac{2}{\sqrt 6} \end{pmatrix} \right)\]

      The change of basis matrix which changes between two orthonormal bases is given by the formula \(M_{E \to B} = (m^i_j = \langle \vec b_i, \vec e_j \rangle)\)

      So,

      \[M_{E \to B} = \begin{pmatrix} \frac{-1}{\sqrt 2} & \frac{-1}{\sqrt 3} & \frac{-1}{\sqrt 6} \\ \frac{1}{\sqrt 2} & \frac{-1}{\sqrt 3} & \frac{-1}{\sqrt 6} \\ 0 & \frac{-1}{\sqrt 3} & \frac{2}{\sqrt 6} \end{pmatrix}\]
    2. Find the explicit change of basis matrix from \(B\) to \(E\).

      Change of basis matrices between orthonormal bases are orthogonal, so

      \[M_{B\to E} = (M_{E\to B})^T = \begin{pmatrix} \frac{-1}{\sqrt 2} & \frac{1}{\sqrt 2} & 0 \\ \frac{-1}{\sqrt 3} & \frac{-1}{\sqrt 3} & \frac{-1}{\sqrt 3} \\ \frac{-1}{\sqrt 6} & \frac{-1}{\sqrt 6} & \frac{2}{\sqrt 6} \end{pmatrix}\]
  1. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of \(\mathbb R^4\) spanned by the set of vectors,

    \[\left\{ \begin{pmatrix} -3 \\ -2 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 8.5 \\ 3 \\ -3 \\ 1 \end{pmatrix}, \begin{pmatrix} -1.5 \\ -12 \\ -3.5 \\ 3.5 \end{pmatrix} \right\}\]

    Applying Gram-Schmidt yields the vectors,

    \[\vec v_1^{\perp} = \begin{pmatrix}-3 \\ -2 \\ 4 \\ 0\end{pmatrix}\] \[\vec v_2^{\perp} = \begin{pmatrix}8.5 \\ 3 \\ -3 \\ 1\end{pmatrix} - \frac{-43.5}{29}\begin{pmatrix}-3 \\ -2 \\ 4 \\ 0\end{pmatrix} = \begin{pmatrix}4 \\ 0 \\ 3 \\ 1\end{pmatrix}\] \[\vec v_3^{\perp} = \begin{pmatrix} -1.5 \\ -12 \\ -3.5 \\ 3.5 \end{pmatrix} - \frac{14.5}{29} \begin{pmatrix}-3 \\ -2 \\ 4 \\ 0\end{pmatrix} - \frac{-13}{26} \begin{pmatrix}4 \\ 0 \\ 3 \\ 1\end{pmatrix} = \begin{pmatrix}2\\ -11\\ -4\\ 4\end{pmatrix}\]

    which are all orthogonal. To obtain an orthonormal basis, we divide each vector by its magnitude, and obtain

    \[\left\{ \frac{1}{\sqrt{29}}\begin{pmatrix}-3 \\ -2 \\ 4 \\ 0\end{pmatrix}, \frac{1}{\sqrt{26}}\begin{pmatrix}4 \\ 0 \\ 3 \\ 1\end{pmatrix}, \frac{1}{\sqrt{157}}\begin{pmatrix}2 \\ -11\\ -4\\ 4\end{pmatrix} \right\}\]
  2. Let

    \[\vec v = \begin{pmatrix}9 \\ -1 \\ -3 \\ 9\end{pmatrix}.\]

    Find a basis of the subspace of \(\mathbb R^4\) of all vectors perpendicular to \(\vec v\)

    Vectors perpendicular (orthogonal) to \(\vec v\) are all vectors \(\vec w\) so that

    \[\vec v \cdot \vec w = 0\]

    This equation is the same as,

    \[\vec v^T \vec w = 0\]

    Which is a matrix equation (there’s only one row, but it’s still a matrix equation):

    \[\begin {pmatrix}9 & -1 & -3 & 9\end{pmatrix} \vec w = 0.\]

    We’re already in row echelon form, and there are three columns without pivots, with dependent variable,

    \[a = \frac{b + 3c - 9d}{9}\]

    We play our usual game to find a basis (make all free variables zero except one, repeat, repeat):

    \[\left\{ \begin{pmatrix} 1/9 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 3/9 \\ 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} -9/9 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}.\]
  3. If \(U\) is a subspace of a vector space \(W\), prove that \(U^{\perp}\) is a subspace of \(W\).

    We follow the same recipe as we always do to prove something is a subspace:

    Let \(\vec v\), \(\vec w\) be vectors in \(U^{\perp}\). Then we just need to show that \(a \vec v + b \vec w\) is, too. Let \(\vec u\) be a vector in \(U\). Then \(\langle a \vec v + b \vec w, \vec u \rangle = a\langle \vec v, \vec u \rangle + b \langle w, \vec u \rangle = 0\), meaning that it is indeed in \(U^\perp\) (why?). So \(U^{\perp}\) is a subspace of \(W\).

    1. Find a basis for the kernel of the matrix \(A\),

      \[A = \begin{pmatrix} 6 & -3 & 6 & 3 \\ -4 & 2 & -4 & -2 \end{pmatrix}.\]

      To find a basis for the kernel, we first row reduce the matrix \(A\), to obtain,

      \[A = \begin{pmatrix} 1 & -1/2 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.\]

      We then read off the solutions to the matrix equation \(A\vec x = \vec 0\) (just like finding bases for eigenspaces); there is one pivot and three free variables, so a basis would be,

      \[\left\{ \begin{pmatrix}1/2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix}-1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix}-1/2 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}\]
    2. Find a basis for the column space of the matrix \(B\),

      \[B = \begin{pmatrix} 3 & 5 & 1 \\ 5 & -4 & 14 \\ 5 & -4 & 14 \\ -2 & -4 & 0 \\ 4 & 9 & -1 \end{pmatrix}.\]

      To find a basis for the column space, we column reduce the matrix \(B\), to obtain

      \[\begin{pmatrix} 1 & 0 & 0 \\ 14 & -74 & 0 \\ 14 & -74 & 0 \\ 0 & -4 & 0 \\ -1 & 14 & 0 \end{pmatrix}\]

      We can then take the nonzero columns as a basis for the column space:

      \[\left\{ \begin{pmatrix}1 \\ 14 \\ 14 \\ 0 \\ -1\end{pmatrix}, \begin{pmatrix}0 \\ -74 \\ -74 \\ -4 \\ 14\end{pmatrix} \right\}\]